Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (3): 275-283.DOI: 10.11983/CBB21039
Previous Articles Next Articles
Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao*(), Haitao Hu*(
)
Received:
2021-02-22
Accepted:
2021-03-26
Online:
2021-05-01
Published:
2021-04-30
Contact:
Yuchun Rao,Haitao Hu
Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential[J]. Chinese Bulletin of Botany, 2021, 56(3): 275-283.
Primer name | Sequence (5′-3′) | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g56630-F-qrt | GATGCTACGGAGACTGCACA | 60.02 | 182 |
LOC_Os02g56630-R-qrt | GAGCCAGAAGCACATGAACA | 59.99 | |
LOC_Os02g57720-F-qrt | CTGACGTCGTGGTCGTTCTA | 59.90 | 101 |
LOC_Os02g57720-R-qrt | GACTTGTTCACCCCCATCAC | 60.22 | |
LOC_Os04g43730-F-qrt | ACCAAAGTGGGTGTTTCTCG | 60.01 | 153 |
LOC_Os04g43730-R-qrt | TCGAGATCTGGCTTGTGTTG | 59.98 | |
LOC_Os04g44060-F-qrt | CGGTGTTCATGGTTCACTTG | 60.00 | 182 |
LOC_Os04g44060-R-qrt | CCTCAGGACGTACTGGTGGT | 60.03 | |
LOC_Os04g46490-F-qrt | GCCTCGTCCTCCACTACATC | 59.69 | 123 |
LOC_Os04g46490-R-qrt | CCGTGTACACCACCATGAAC | 59.73 | |
LOC_Os02g57580-F-qrt | ACCTCTTCAGATGGGGTGTG | 59.96 | 101 |
LOC_Os02g57580-R-qrt | CCAGTCAGTTTTGCAGACCA | 59.87 | |
LOC_Os04g48230-F-qrt | GGGCACTACAAGTCCGTGAT | 60.00 | 199 |
LOC_Os04g48230-R-qrt | CTTGGTAGCTTCCGATGAGC | 59.98 | |
LOC_Os04g44570-F-qrt | CGCCACCACTGGGTTTACT | 60.96 | 123 |
LOC_Os04g44570-R-qrt | CACGGGAAGCCGAGTATCT | 60.23 |
Table 1 The primer sequences of real-time quantitative PCR
Primer name | Sequence (5′-3′) | Tm (°C) | Length (bp) |
---|---|---|---|
LOC_Os02g56630-F-qrt | GATGCTACGGAGACTGCACA | 60.02 | 182 |
LOC_Os02g56630-R-qrt | GAGCCAGAAGCACATGAACA | 59.99 | |
LOC_Os02g57720-F-qrt | CTGACGTCGTGGTCGTTCTA | 59.90 | 101 |
LOC_Os02g57720-R-qrt | GACTTGTTCACCCCCATCAC | 60.22 | |
LOC_Os04g43730-F-qrt | ACCAAAGTGGGTGTTTCTCG | 60.01 | 153 |
LOC_Os04g43730-R-qrt | TCGAGATCTGGCTTGTGTTG | 59.98 | |
LOC_Os04g44060-F-qrt | CGGTGTTCATGGTTCACTTG | 60.00 | 182 |
LOC_Os04g44060-R-qrt | CCTCAGGACGTACTGGTGGT | 60.03 | |
LOC_Os04g46490-F-qrt | GCCTCGTCCTCCACTACATC | 59.69 | 123 |
LOC_Os04g46490-R-qrt | CCGTGTACACCACCATGAAC | 59.73 | |
LOC_Os02g57580-F-qrt | ACCTCTTCAGATGGGGTGTG | 59.96 | 101 |
LOC_Os02g57580-R-qrt | CCAGTCAGTTTTGCAGACCA | 59.87 | |
LOC_Os04g48230-F-qrt | GGGCACTACAAGTCCGTGAT | 60.00 | 199 |
LOC_Os04g48230-R-qrt | CTTGGTAGCTTCCGATGAGC | 59.98 | |
LOC_Os04g44570-F-qrt | CGCCACCACTGGGTTTACT | 60.96 | 123 |
LOC_Os04g44570-R-qrt | CACGGGAAGCCGAGTATCT | 60.23 |
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Likelihood of odd (LOD) |
---|---|---|---|---|
qLpw2-8 | 2 | 34636269-35675126 | 148.48-152.93 | 3.27 |
qLpw3-8 | 3 | 30389734-30481217 | 130.27-130.66 | 2.93 |
qLpw4-8 | 4 | 24066261-30847136 | 103.17-132.23 | 5.15 |
qLpw11-8 | 11 | 2051418-2119803 | 8.79-9.09 | 3.06 |
qLpw12-8 | 12 | 25396321-25626163 | 108.87-109.85 | 3.34 |
Table 2 QTL analysis of leaf water potential in rice at tillering stage
QTL | Chromosome | Physical distance (bp) | Position of support (cM) | Likelihood of odd (LOD) |
---|---|---|---|---|
qLpw2-8 | 2 | 34636269-35675126 | 148.48-152.93 | 3.27 |
qLpw3-8 | 3 | 30389734-30481217 | 130.27-130.66 | 2.93 |
qLpw4-8 | 4 | 24066261-30847136 | 103.17-132.23 | 5.15 |
qLpw11-8 | 11 | 2051418-2119803 | 8.79-9.09 | 3.06 |
qLpw12-8 | 12 | 25396321-25626163 | 108.87-109.85 | 3.34 |
Chromosome | Gene | Function | Regulation object | Reference |
---|---|---|---|---|
2 | LOC_Os02g56630 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK24-OsWAK receptor-like protein kinase | |
4 | LOC_Os04g43730 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK51-OsWAK receptor-like protein kinase | |
2 | LOC_Os02g57580 | Maybe involved in anthocyanin vacuole storage, participate in osmotic adjustment | Anthocyanin permease | Aza-González et al., 2013 |
2 | LOC_Os02g57720 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g46490 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44570 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44060 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g48230 | Maybe involved in the perception, conduc- tion of plant dehydration and regulation of antidehydration substance synthesis | Dehydration response related protein | Shinozaki and Yamaguchi-Shinozaki, 1997 |
Table 3 The function annotation of candidate genes
Chromosome | Gene | Function | Regulation object | Reference |
---|---|---|---|---|
2 | LOC_Os02g56630 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK24-OsWAK receptor-like protein kinase | |
4 | LOC_Os04g43730 | Play an important regulatory role in the response of plants to abiotic stress | OsWAK51-OsWAK receptor-like protein kinase | |
2 | LOC_Os02g57580 | Maybe involved in anthocyanin vacuole storage, participate in osmotic adjustment | Anthocyanin permease | Aza-González et al., 2013 |
2 | LOC_Os02g57720 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g46490 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44570 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g44060 | Mediate the transport of water across the membrane, regulate water | Aquaporin | |
4 | LOC_Os04g48230 | Maybe involved in the perception, conduc- tion of plant dehydration and regulation of antidehydration substance synthesis | Dehydration response related protein | Shinozaki and Yamaguchi-Shinozaki, 1997 |
Figure 4 Differences in the expression level of candidate genes involved in leaf water potential in rice ** indicate significant differences in genes expression level between HZ and Nekken2 at 0.01 level.
1 | 曹玉婷, 丁艳菲, 朱诚 (2014). 类受体蛋白激酶与植物非生物胁迫应答. 中国生物化学与分子生物学报 30, 241-247. |
2 | 高世斌, 冯质雷, 李晚忱, 荣廷昭 (2005). 干旱胁迫下玉米根系性状和产量的QTLs分析. 作物学报 31, 718-722. |
3 | 刘鸿艳, 邹桂花, 刘国兰, 胡颂平, 李明寿, 余新桥, 梅捍卫, 罗利军 (2005). 水分梯度下水稻CT, LWP和SF的相关及其QTL定位研究. 科学通报 50, 130-139. |
4 | 穆平 (2004). 水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较. 博士论文. 北京: 中国农业大学. pp. 1-115. |
5 | 聂元元, 邹桂花, 李瑶, 刘国兰, 蔡耀辉, 毛凌华, 颜龙安, 刘鸿艳, 罗利军 (2012). 水稻第2染色体上抗旱相关性状QTL的精细定位. 作物学报 38, 988-995. |
6 |
潘琰, 龚吉蕊, 宝音陶格涛, 罗亲普, 翟占伟, 徐沙, 王忆慧, 刘敏, 杨丽丽 (2017). 季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡. 植物学报 52, 307-321.
DOI |
7 | 邱泽森, 朱庆森, 刘建国, 巫亚东, 杨建昌 (1993). 水稻在不同土水势下的生理反应. 江苏农学院学报 14(2), 7-11. |
8 | 曲延英, 穆平, 李雪琴, 田玉秀, 文峰, 张洪亮, 李自超 (2008). 水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位. 作物学报 34, 198-206. |
9 | 王辉, 曹立勇, 郭玉华, 程式华 (2008). 水稻生理特性与抗旱性的相关分析及QTL定位. 中国水稻科学 22, 477-484. |
10 | 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597. |
11 | 于利刚, 解莉楠, 李玉花 (2011). 植物抗逆反应中水孔蛋白的表达调控研究. 生物技术通报 27(8), 5-14. |
12 | 赵秀琴, 徐建龙, 朱苓华, 黎志康 (2008). 利用回交导入系定位干旱环境下水稻植株水分状况相关QTL. 作物学报 34, 1696-1703. |
13 | 朱鸿宇, 王盛, 张月, 林晗, 路梅, 吴先美, 李三峰, 朱旭东, 饶玉春, 王跃星 (2020). 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析. 中国科学: 生命科学 50, 623-632. |
14 |
Aza-González C, Herrera-Isidrón L, Núñez-Palenius HG, De La Vega OM, Ochoa-Alejo N (2013). Anthocyanin accumulation and expression analysis of biosynthesis- related genes during chili pepper fruit development. Biol Plantarum 57, 49-55.
DOI URL |
15 |
Hemamalini GS, Shashidhar HE, Hittalmani S (2000). Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69-78.
DOI URL |
16 |
Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451-459.
PMID |
17 |
Johansson I, Larsson C, Ek B, Kjellbom P (1996). The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca 2+ and apoplastic water potential . Plant Cell 8, 1181-1191.
PMID |
18 |
Jongdee B, Fukai S, Cooper M (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76, 153-163.
DOI URL |
19 |
Li LG, Li SF, Tao Y, Kitagawa Y (2000). Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci 154, 43-51.
DOI URL |
20 |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods 25, 402-408.
PMID |
21 |
Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397-400.
PMID |
22 |
Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wago- ner W, Lightner J, Wagner DR (2003). Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689-1703.
PMID |
23 | McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13. |
24 |
Mueller LA, Goodman CD, Silady RA, Walbot V (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123, 1561-1570.
PMID |
25 |
Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS (2016). Multiple strategies for drought survival among woody plant species. Funct Ecol 30, 517-526.
DOI URL |
26 |
Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115, 327-334.
DOI URL |
27 |
Wang YJ, Huang JK, Wang JX, Findlay C (2018). Miti-gating rice production risks from drought through improving irrigation infrastructure and management in China. Aust J Agric Resour Econ 62, 161-176.
DOI URL |
28 |
Zhou Q, Ju CX, Wang ZQ, Zhang H, Liu LJ, Yang JC, Zhang JH (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric 16, 1028-1043.
DOI URL |
[1] | Weijun Ye. QTLs Analysis for Five Yield-Related Traits in Mungbean (Vigna radiata L.) [J]. Chinese Bulletin of Botany, 2023, 58(1): 0-0. |
[2] | Wei Heping, Lu Tao, Jia Qiwei, Deng Fei, Zhu Hao, Qi Zehua, Wang Yuxi, Ye Hanfei, Yin Wenjing, Fang Yuan, Mu Dan, Rao Yuchun. QTL Mapping of Candidate Genes for Heading Date in Rice [J]. Chinese Bulletin of Botany, 2022, 57(5): 588-595. |
[3] | Liu Xiaolong, Ji Ping, Yang Hongtao, Ding Yongdian, Fu Jialing, Liang Jiangxia, Yu Congcong. Priming Effect of Abscisic Acid on High Temperature Stress During Rice Heading-flowering Stage [J]. Chinese Bulletin of Botany, 2022, 57(5): 596-610. |
[4] | Lixia Jia, Yanhua Qi. Advances in the Regulation of Rice (Oryza sativa) Grain Shape by Auxin Metabolism, Transport and Signal Transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263-275. |
[5] | Kairu Yang, Qiwei Jia, Jiayi Jin, Hanfei Ye, Sheng Wang, Qianyu Chen, Yian Guan, Chenyang Pan, Dedong Xin, Yuan Fang, Yuexing Wang, Yuchun Rao. Cloning and Functional Analysis of Rice Yellow Green Leaf Regulatory Gene YGL18 [J]. Chinese Bulletin of Botany, 2022, 57(3): 276-287. |
[6] | Jia Song, Mingyang Zhi, Qiang Chen, Yueying Li, Longkun Wu, Baoxuan Nong, Danting Li, Hongbo Pang, Xiaoming Zheng. Nucleotide diversity and adaptation of CTB4a gene related to cold tolerance in rice [J]. Biodiv Sci, 2022, 30(2): 21258-. |
[7] | Hanfei Ye, Wenjing Yin, Yian Guan, Kairu Yang, Qianyu Chen, Shuying Yu, Xudong Zhu, Dedong Xin, Wei Zhang, Yuexing Wang, Yuchun Rao. QTL Mapping and Candidate Gene Analysis of Vitamin E in Rice Grain [J]. Chinese Bulletin of Botany, 2022, 57(2): 157-170. |
[8] | Luyao Wang, Jian Chen, Shouqing Zhao, Huili Yan, Wenxiu Xu, Ruoxi Liu, Mi Ma, Yijun Yu, Zhenyan He. Research Progress of the Physiological and Molecular Mechanisms of Cadmium Accumulation in Rice [J]. Chinese Bulletin of Botany, 2022, 57(2): 236-249. |
[9] | Xia Wang, Wei Yan, Zhiqin Zhou, Zhenyi Chang, Minting Zheng, Xiaoyan Tang, Jianxin Wu. Identification and Mapping of a Rice Male Sterility Mutant ms102 [J]. Chinese Bulletin of Botany, 2022, 57(1): 42-55. |
[10] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[11] | Tianxingzi Wang, Zheng Zhu, Yue Chen, Yuqing Liu, Gaowei Yan, Shan Xu, Tong Zhang, Jinjiao Ma, Shijuan Dou, Liyun Li, Guozhen Liu. Rice OsWRKY42 is a Novel Element in Xa21-mediated Resistance Pathway Against Bacterial Leaf Blight [J]. Chinese Bulletin of Botany, 2021, 56(6): 687-698. |
[12] | Jiangyuan Shang, Yan Chun, Xueyong Li. Map-based Cloning and Natural Variation Analysis of the PAL3 Gene Controlling Panicle Length in Rice [J]. Chinese Bulletin of Botany, 2021, 56(5): 520-532. |
[13] | Jian-Min Zhou. A Ca2+-ROS Signaling Axis in Rice Provides Clues to Rice-pathogen Coevolution and Crop Improvements [J]. Chinese Bulletin of Botany, 2021, 56(5): 513-515. |
[14] | Sanhe Li, Kai Liu, Wenjun Zha, Huashan Xu, Peide Li, Lei Zhou, Aiqing You. Effects of transgenic rice H23 with BPH9 and Bar genes resistant to brown planthopper and herbicide on non-target organisms [J]. Biodiv Sci, 2021, 29(4): 488-494. |
[15] | Yigong Zhang, Yi Zhang, Ayibaiheremu Mutailifu, Daoyuan Zhang. Heterologous Overexpression of Desiccation-tolerance Moss ScABI3 Gene Changes Stomatal Phenotype and Improves Drought Resistance in Transgenic Arabidopsis [J]. Chinese Bulletin of Botany, 2021, 56(4): 414-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||