Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (4): 574-584.DOI: 10.11983/CBB24039 cstr: 32102.14.CBB24039
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang*(), Yuchun Rao*(
)
Received:
2024-03-11
Accepted:
2024-05-07
Online:
2024-07-10
Published:
2024-07-10
Contact:
*E-mail: wlzhangwhu@163.com; ryc@zjnu.cn
Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress[J]. Chinese Bulletin of Botany, 2024, 59(4): 574-584.
Component | Volume (μL) |
---|---|
500 ng∙µL-1 cDNA | 1 |
10 µmol∙L-1 forward primer | 1 |
10 µmol∙L-1 reverse primer | 1 |
ddH2O | 2 |
2× SYBR Mix | 5 |
Table 1 PCR reaction system
Component | Volume (μL) |
---|---|
500 ng∙µL-1 cDNA | 1 |
10 µmol∙L-1 forward primer | 1 |
10 µmol∙L-1 reverse primer | 1 |
ddH2O | 2 |
2× SYBR Mix | 5 |
Reaction temperature (°C) | Function | Reaction time | Cycle number |
---|---|---|---|
95 | Predegeneration | 5 min | 1 |
95 | Denaturation | 39 | |
55 | Annealing | ||
72 | Extension | ||
72 | Final extension | 10 min | 1 |
15 | Hold | Indefinite | 1 |
Table 2 PCR reaction procedure
Reaction temperature (°C) | Function | Reaction time | Cycle number |
---|---|---|---|
95 | Predegeneration | 5 min | 1 |
95 | Denaturation | 39 | |
55 | Annealing | ||
72 | Extension | ||
72 | Final extension | 10 min | 1 |
15 | Hold | Indefinite | 1 |
Traits | Primer name | Forward primer (5′-3′) | Reverse primer (5′-3′) |
---|---|---|---|
OsActin | TGGCATCTCAGCACATTCC | TGCACAATGGATGGGTCAGA | |
Chloroplast synthesis | LOC_Os03g20700 | GGGAACTTGGCGTTTCATTA | TCAAATGTCTTGCGTTGCTC |
and degradation | LOC_Os03g59640 | AAAGAATGGCTCGAAAAGCA | GCCACCACATGGTAGCTTCT |
LOC_Os08g06630 | TGGATCAACAAGCATTTCCA | GACAACCCGAATTGTCTGCT | |
LOC_Os03g19510 | GACCCGTGGAGGATGATATG | GCTGTATCGCTTCCCTTTTG | |
LOC_Os03g27770 | ACCGACGTCGCCTATGTTTA | TATAGCCACCCCTCCAGTTG | |
LOC_Os05g28200 | AAGCAGAATGGATGGATTGG | GAGTGACTGAAGCCCCAGAG | |
LOC_Os03g45194 | TGGTGCAACGAAGAGAAGTG | ACGAGATAATCCGCAACCAC | |
LOC_Os06g07210 | AAGCAAATCTGCTGGAGGAA | AAAAATATCCGCATGCCAAG | |
Enzyme activity | LOC_Os02g02400 | GGCGTCAACACCTACACCTT | GTCGAACCTCTCCTCCTCCT |
LOC_Os06g51150 | GTGAATGCACCAAAATGTGC | CCAGCCTGTTGGAAATTGTT | |
LOC_Os03g03910 | CCACCACAACAACCACTACG | AGTGCGTCGATCCATCTCTT | |
LOC_Os03g57220 | CCTCTGGAGCTGAGGATGAG | CCCTGGCTGTTGCATACTCT | |
LOC_Os04g53210 | GGCTGAATTGGCTGGTTTTA | GTCCGTCCAAGACAGAGAGC | |
LOC_Os07g05820 | ATTGCGCTTACGGTGGATAC | GATCACTCCCTTCACCAGGA | |
LOC_Os01g17260 | GGAAGACACCAGCTGAGAGG | CAAGAGACCCAGCCAATGTT | |
Photomorphogenesis | LOC_Os05g11510 | GAGCCACGCGTACTTCTTCT | GGTGGTCGCTCTTGGATG |
LOC_Os02g10860 | GCCAAAAAGCTCTCATGGTC | GGAAGGAGAAGGGATCGAAG | |
LOC_Os03g51030 | AAGAGCTTGCCTTGGAATGA | GGGACAGTTGCTGTTTCCAT | |
LOC_Os03g19590 | CTCGCCTACTCCGAGAACAC | AGGATGGCGTAGAAGGGTTT | |
LOC_Os02g36380 | CGTCTACGTCAGAGGCATCA | CTTCCCAGCCTGTTGTCAAT | |
LOC_Os04g37920 | GATGAAGCAGCTTGTGTGGA | AACAAGGGGGTAACCAGTCC | |
LOC_Os06g40080 | TCAAGGAACAGGGTCACACA | TGCCCTCCCATTTGTAGAAC |
Table 3 Primer sequences for qRT-PCR
Traits | Primer name | Forward primer (5′-3′) | Reverse primer (5′-3′) |
---|---|---|---|
OsActin | TGGCATCTCAGCACATTCC | TGCACAATGGATGGGTCAGA | |
Chloroplast synthesis | LOC_Os03g20700 | GGGAACTTGGCGTTTCATTA | TCAAATGTCTTGCGTTGCTC |
and degradation | LOC_Os03g59640 | AAAGAATGGCTCGAAAAGCA | GCCACCACATGGTAGCTTCT |
LOC_Os08g06630 | TGGATCAACAAGCATTTCCA | GACAACCCGAATTGTCTGCT | |
LOC_Os03g19510 | GACCCGTGGAGGATGATATG | GCTGTATCGCTTCCCTTTTG | |
LOC_Os03g27770 | ACCGACGTCGCCTATGTTTA | TATAGCCACCCCTCCAGTTG | |
LOC_Os05g28200 | AAGCAGAATGGATGGATTGG | GAGTGACTGAAGCCCCAGAG | |
LOC_Os03g45194 | TGGTGCAACGAAGAGAAGTG | ACGAGATAATCCGCAACCAC | |
LOC_Os06g07210 | AAGCAAATCTGCTGGAGGAA | AAAAATATCCGCATGCCAAG | |
Enzyme activity | LOC_Os02g02400 | GGCGTCAACACCTACACCTT | GTCGAACCTCTCCTCCTCCT |
LOC_Os06g51150 | GTGAATGCACCAAAATGTGC | CCAGCCTGTTGGAAATTGTT | |
LOC_Os03g03910 | CCACCACAACAACCACTACG | AGTGCGTCGATCCATCTCTT | |
LOC_Os03g57220 | CCTCTGGAGCTGAGGATGAG | CCCTGGCTGTTGCATACTCT | |
LOC_Os04g53210 | GGCTGAATTGGCTGGTTTTA | GTCCGTCCAAGACAGAGAGC | |
LOC_Os07g05820 | ATTGCGCTTACGGTGGATAC | GATCACTCCCTTCACCAGGA | |
LOC_Os01g17260 | GGAAGACACCAGCTGAGAGG | CAAGAGACCCAGCCAATGTT | |
Photomorphogenesis | LOC_Os05g11510 | GAGCCACGCGTACTTCTTCT | GGTGGTCGCTCTTGGATG |
LOC_Os02g10860 | GCCAAAAAGCTCTCATGGTC | GGAAGGAGAAGGGATCGAAG | |
LOC_Os03g51030 | AAGAGCTTGCCTTGGAATGA | GGGACAGTTGCTGTTTCCAT | |
LOC_Os03g19590 | CTCGCCTACTCCGAGAACAC | AGGATGGCGTAGAAGGGTTT | |
LOC_Os02g36380 | CGTCTACGTCAGAGGCATCA | CTTCCCAGCCTGTTGTCAAT | |
LOC_Os04g37920 | GATGAAGCAGCTTGTGTGGA | AACAAGGGGGTAACCAGTCC | |
LOC_Os06g40080 | TCAAGGAACAGGGTCACACA | TGCCCTCCCATTTGTAGAAC |
Figure 1 Physiological phenotype of rice leaves (A) Comparison of leaf color at the trilobal stage (bar=1.2 cm); (B) Comparison of leaf color at the tillering stage (bar=2 cm); (C) Diaminobenzidine (DAB) staining of leaves at the trilobal stage (bar=1.2 cm); (D) DAB staining of leaves at the tillering stage (bar=2 cm); (E), (F) Arrows indicate chloroplast autofluorescence at the trilobal stage (bars=25 μm); (G), (H) Chloroplast autofluorescence at the tillering stage (bars=100 μm). WT: Wild type
Figure 3 Antioxidant enzymes of rice leaves under low light stress (A)-(D) At the trilobal stage; (E)-(H) At the tillering stage. * P<0.05; ** P<0.01 (Student’s t-test)
Figure 4 Differences in the expression of enzyme activity related genes in rice (A) At the trilobal stage; (B) At the tillering stage. * P<0.05; ** P<0.01 (Student’s t-test)
Figure 5 Changes in chlorophyll content of rice under low light stress (A)-(D) At the trilobal stage; (E)-(H) At the tillering stage. * P<0.05; ** P<0.01 (Student’s t-test)
Figure 6 Differences in the expression of genes related to chloroplast synthesis and degradation in rice (A) At the trilobal stage; (B) At the tillering stage. * P<0.05; ** P<0.01 (Student’s t-test)
Figure 7 Differences in the expression of genes related to photomorphogenesis in rice (A) At the trilobal stage; (B) At the tillering stage. * P<0.05; ** P<0.01 (Student’s t-test)
[1] |
陈德良, 陶月良, 吴友贵, 程瑶, 夏家天 (2016). 遮荫对百山祖冷杉光合特性和叶绿素荧光参数的影响. 核农学报 30, 2056-2064.
DOI |
[2] | 陈小玲, 陈清西 (2014). 植物弱光逆境生理的研究进展. 北方园艺 (6), 183-187. |
[3] | 陈宇彬 (2023). 中国南方水稻复种指数时空演变及驱动机制分析. 硕士论文. 太原: 山西财经大学. pp. 19-21. |
[4] | 种培芳 (2003). 弱光胁迫对甜瓜(Cucumis melo L.)光合特性及生长发育的影响. 硕士论文. 兰州: 甘肃农业大学. pp. 20-22. |
[5] |
方希林, 杨漫, 王鑫, 黄沆, 肖楠, 贺治洲, 王悦 (2017). 水稻叶色突变体ygr的遗传分析与基因定位. 核农学报 31, 2096-2102.
DOI |
[6] | 李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云 (2015). 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报 35, 4436-4444. |
[7] | 刘利, 王丽, 邓飞, 黄云, 刘代银, 任万军, 杨文钰 (2012). 遮荫对不同杂交稻组合叶片渗透调节物质含量及保护酶活性的影响. 中国水稻科学 26, 569-575. |
[8] | 彭琦, 杨柳青 (2022). 弱光胁迫对白蟾生理特性的影响. 绿色科技 24(15), 179-184, 218. |
[9] | 王学春, 赵祥, 赵长坤, 杨国涛, 彭友林, 胡运高 (2021). 四川常用杂交水稻对弱光胁迫的响应差异及其评价体系构建. 云南大学学报(自然科学版) 43, 386-394. |
[10] |
薛伟, 李向义, 朱军涛, 林丽莎, 王迎菊 (2011). 遮荫对疏叶骆驼刺叶形态和光合参数的影响. 植物生态学报 35, 82- 90.
DOI |
[11] |
严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福 (2023). 我国水稻优势产区生产格局及施肥现状研究. 中国稻米 29(3), 1-8.
DOI |
[12] | 张彩霞 (2016). 气候变化背景下南方主要种植制度的气候适宜性研究. 硕士论文. 南昌: 江西农业大学. pp. 13-18. |
[13] |
Bai B, Lu NN, Li YP, Guo SL, Yin HB, He YN, Sun W, Li W, Xie XZ (2019). OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions. Plant Sci 284, 192-202.
DOI PMID |
[14] |
Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A (2019). A unique bZIP transcription factor imparting multiple stress tolerance in rice. Rice 12, 58.
DOI PMID |
[15] |
Hirose F, Inagaki N, Hanada A, Yamaguchi S, Kamiya Y, Miyao A, Hirochika H, Takano M (2012). Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation. Plant Cell Physiol 53, 1570-1582.
DOI PMID |
[16] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25, 402-408.
DOI PMID |
[17] | Nikiforou C, Manetas Y (2011). Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study. Funct Plant Biol 38, 848-855. |
[18] | Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009). Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57, 120-131. |
[19] |
Takano M, Inagaki N, Xie XZ, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T (2009). Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci USA 106, 14705-14710.
DOI PMID |
[20] |
Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006). An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45, 46-57.
PMID |
[21] |
Wang YL, Wang CM, Zheng M, Lyu J, Xu Y, Li XH, Niu M, Long WH, Wang D, Wang HY, Terzaghi W, Wang YH, Wan JM (2016). WHITE PANICLE1, a val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiol 170, 2110-2123.
DOI PMID |
[22] | Zhang HT, Li JJ, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006). Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62, 325-337. |
[23] | Zhang ZS, Lu YS, Zhai LG, Deng RS, Jiang J, Li Y, He ZH, Peng XX (2012). Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS One 7, e39658. |
[24] | Zhang ZS, Xu YY, Xie ZW, Li XY, He ZH, Peng XX (2016). Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels. Mol Plant 9, 737-748. |
[25] |
Zhao Q, Zhou LJ, Liu JC, Cao ZZ, Du XX, Huang FD, Pan G, Cheng FM (2018). Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep 37, 741-757.
DOI PMID |
[1] | YAN Xiao-Li, LIU Gui-Mei, LI Xiao-Yu, JIANG Yu-Xiang, QUAN Xiao-Qiang, WANG Yan-Ru, QU Lu-Ping, TANG Xing-Hao. Photosynthetic characteristics and chlorophyll fluorescence parameters in Schima superba seedlings under different level of nitrogen addition and NH4+-N to NO3--N ratio [J]. Chin J Plant Ecol, 2025, 49(4): 624-637. |
[2] | WANG Bei-Bei, WU Su, WANG Miao-Miao, HU Jin-Tao. Contributions of radiative, structural, and physiological information of solar-induced chlorophyll fluorescence on predicting crop gross primary production across temporal scales [J]. Chin J Plant Ecol, 2025, 49(4): 562-572. |
[3] |
Juan Cui, Xiaoyu Yu, Yuejiao Yu, Chengwei Liang, Jian Sun, Wenfu Chen.
Analysis of Texture Factors and Genetic Basis Influencing the Differences in Eating Quality between Northeast China and Japanese Japonica Rice [J]. Chinese Bulletin of Botany, 2025, 60(4): 1-0. |
[4] | Zhao Ling, Guan Ju, Liang Wenhua, Zhang Yong, Lu Kai, Zhao Chunfang, Li Yusheng, Zhang Yadong. Mapping of QTLs for Heat Tolerance at the Seedling Stage in Rice Based on a High-density Bin Map [J]. Chinese Bulletin of Botany, 2025, 60(3): 342-353. |
[5] | LIU Ke-Yan, HAN Lu, SONG Wu-Ye, ZHANG Chu-Rui, HU Xu, XU Hang, CHEN Li-Xin. Detection of drought effects on photosynthetic stability of vegetation on the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2025, 49(3): 415-431. |
[6] | Xinyu Li, Yue Gu, Feifei Xu, Jinsong Bao. Research Progress on Post-translational Modifications of Starch Biosynthesis-related Proteins in Rice Endosperm [J]. Chinese Bulletin of Botany, 2025, 60(2): 256-270. |
[7] | Jianguo Li, Yi Zhang, Wenjun Zhang. Iron Plaque Formation and Its Effects on Phosphorus Absorption in Rice Roots [J]. Chinese Bulletin of Botany, 2025, 60(1): 132-143. |
[8] | QUAN Xiao-Qiang, WANG Yan-Ru, LI Xiao-Yu, LIANG Hai-Yan, WANG Li-Dong, YAN Xiao-Li. Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling [J]. Chin J Plant Ecol, 2024, 48(8): 1050-1064. |
[9] | Ruifeng Yao, Daoxin Xie. Activation and Termination of Strigolactone Signal Perception in Rice [J]. Chinese Bulletin of Botany, 2024, 59(6): 873-877. |
[10] | Jinjin Lian, Luyao Tang, Yinuo Zhang, Jiaxing Zheng, Chaoyu Zhu, Yuhan Ye, Yuexing Wang, Wennan Shang, Zhenghao Fu, Xinxuan Xu, Richeng Wu, Mei Lu, Changchun Wang, Yuchun Rao. Genetic Locus Mining and Candidate Gene Analysis of Antioxidant Traits in Rice [J]. Chinese Bulletin of Botany, 2024, 59(5): 738-751. |
[11] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
[12] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[13] | Yanli Fang, Chuanyu Tian, Ruyi Su, Yapei Liu, Chunlian Wang, Xifeng Chen, Wei Guo, Zhiyuan Ji. Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak [J]. Chinese Bulletin of Botany, 2024, 59(1): 1-9. |
[14] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[15] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||