植物学报 ›› 2021, Vol. 56 ›› Issue (2): 175-182.DOI: 10.11983/CBB20133
收稿日期:
2020-07-26
接受日期:
2020-12-07
出版日期:
2021-03-01
发布日期:
2021-03-17
通讯作者:
张可伟
作者简介:
*E-mail: kwzhang@zjnu.edu.cn基金资助:
Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang()
Received:
2020-07-26
Accepted:
2020-12-07
Online:
2021-03-01
Published:
2021-03-17
Contact:
Kewei Zhang
摘要: 植物激素是植物体内合成的一类重要小分子物质, 其含量可因外界条件变化而改变, 并作为信号物质调控植物生长发育和适应环境。水培所用介质体积过小会造成植物生长受限、植株矮小, 通常认为是小体积生长介质中营养成分不足所致。研究表明, 在不同体积且不含任何营养物质的纯水中培养的水稻(Oryza sativa)亦表现出不同的生长速度, 幼苗在小体积水中生长缓慢而在大体积水中则生长快速且健壮。用液相色谱-质谱(LC-MS)测定培养液和水稻幼苗的激素含量, 发现相比于大体积培养条件, 小体积培养液中的植物体内积累了较多的ABA、SA和JA-Ile等胁迫相关激素, 最终导致幼苗生长缓慢和生物量积累减少。结果表明植物可能通过感知根际激素浓度来预测外界水量限制, 并据此调节生长速度, 以最大限度地适应外界环境。研究结果对揭示根分泌激素的生理功能以及优化植物工厂的水培条件具有借鉴意义。
俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度. 植物学报, 2021, 56(2): 175-182.
Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang. Regulation of Rice Growth by Root-secreted Phytohormones. Chinese Bulletin of Botany, 2021, 56(2): 175-182.
图1 不同体积水培养12天的水稻幼苗表型 (A)不同体积纯水培养12天后水稻幼苗表型(bar=3 cm); (B) 不同体积纯水培养12天后水稻幼苗株高(n=30); (C)不同体积纯水培养12天后水稻幼苗鲜重(n=30); (D) 0.1 L与4 L培养容器及幼苗表型(bar=3 cm)。** 差异显著(P<0.01), *** 差异极显著(P<0.001)。
Figure 1 The phenotype of 12-day rice seedlings grown in different water culture systems (A) Phenotypes of rice seedlings grown in different water culture systems for 12 days (bar=3 cm); (B) Plant height of rice seedlings grown in different water culture systems for 12 days (n=30); (C) Fresh weight of rice seedlings grown in different water culture systems for 12 days (n=30); (D) 0.1 and 4 L containers used in this experiment and the phenotypes of rice seedlings grown in them, respectively (bar=3 cm). ** significant difference at P<0.01; *** significant differences at P<0.001.
图2 不同体积水培条件下水稻幼苗地上部组织激素含量 (A)-(J)0.1和4 L纯水培养12天后水稻幼苗地上部组织ABA、SA、JA-Ile、IAA、tZ、tZR、cZ、cZR、iP和iPR的含量。* 差异显著(P<0.05); *** 差异极显著(P<0.001)。
Figure 2 Hormone profiling of shoot of rice seedlings grown in different water culture sytems (A)-(J) The ABA, SA, JA-Ile, IAA, tZ, tZR, cZ, cZR, iP, and iPR contents in shoot of rice seedlings after planting in 0.1 and 4 L water culture systems for 12 days, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
图3 不同体积水培条件下水稻幼苗根部激素含量 (A)-(J)0.1和4 L纯水培养12天后水稻幼苗根部ABA、SA、JA-Ile、IAA、tZ、tZR、cZ、cZR、iP和iPR的含量。* 差异显著(P<0.05); *** 差异极显著(P<0.001)。
Figure 3 Profiling of phytohormones in the root of rice after planting in different water culture systems (A)-(J)The ABA, SA, JA-Ile, IAA, tZ, tZR, cZ, cZR, iP, and iPR contents in the root of rice after planting in 0.1 and 4 L water culture systems, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
图4 不同体积水培后水中激素含量 (A)-(H)0.1和4 L纯水培养水稻幼苗12天后水中ABA、SA、JA-Ile、IAA、cZ、cZR、iP和iPR的含量。* 差异显著(P<0.05); *** 差异极显著(P<0.001)。
Figure 4 Phytohormone profiling of the different hydroculture systems (A)-(H) The ABA, SA, JA-Ile, IAA, cZ, cZR, iP, and iPR contents in 0.1 and 4 L water culture systems after being planted with rice seedlings for 12 days, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
[1] | 程立超, 曾令鑫 (2020). 不同水培条件绿萝生长状况研究. 中国林副特产 (1),24-26, 30. |
[2] |
代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54,255-264.
DOI URL |
[3] | 甘林, 代玉立, 杨秀娟, 杜宜新, 石妞妞, 阮宏椿, 陈福如 (2020). 香蕉抗(感)病品种根系分泌物对枯萎病菌和枯草芽孢杆菌的生物效应. 应用生态学报 31,2279-2286. |
[4] | 洪常青, 聂艳丽 (2003). 根系分泌物及其在植物营养中的作用. 生态环境 12,508-511. |
[5] | 梁银丽, 康绍忠, 张成娥 (1999). 不同水分条件下小麦生长特性及氮磷营养的调节作用. 干旱地区农业研究 17(4),58-64. |
[6] | 罗晓蔓, 周书宇, 杨雪 (2019). 植物根系分泌物的分类和作用. 安徽农业科学 47(4),37-39, 45. |
[7] | 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林 (2020). 高等植物适应干旱生境研究进展. 草学 (3),4-15. |
[8] | 孙珂, 周亚峰, 黄雅敏, 李会松, 孔倩倩 (2020). 果菜类蔬菜水培研究进展. 农业科技通讯 (3),25-27. |
[9] | 岳杨, 曹世文, 王颖 (2010). 辽河下游平原区淹灌条件下水稻的需水规律. 东北水利水电 (2),58-59. |
[10] | 张奇, 张清旭, 庞晓敏, 叶江华, 王海斌, 贾小丽, 何海斌 (2020). 稗草根系分泌物对水稻种子萌发和苗期生长的影响. 亚热带农业研究 16,8-15. |
[11] | 张瑜, 刘玉红, 扎西顿珠, 杨亚辉, 代安国 (2020). 不同营养液浓度对水培生菜生长的影响. 西藏农业科技 42,54-56. |
[12] | Albrecht T, Argueso CT (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann Bot 119,725-735. |
[13] |
Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D (2017). Regulation of proline biosynthesis and resistance to drought stress in two barley ( Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem 118,427-437.
DOI URL |
[14] | Bhaskara GB, Nguyen TT, Verslues PE (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160,379-395. |
[15] |
Bielach A, Hrtyan M, Tognetti VB (2017). Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18,1427.
DOI URL |
[16] |
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42,998-1018.
DOI PMID |
[17] |
Fang YJ, Xiong LZ (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72,673-689.
DOI URL |
[18] |
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8,12696.
DOI URL |
[19] |
Hu HH, Xiong LZ (2014). Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65,715- 741.
DOI URL |
[20] |
Huang JL, Zhai JQ, Jiang T, Wang YJ, Li XC, Wang R, Xiong M, Su BD, Thomas F (2018). Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dyn 50,507-525.
DOI URL |
[21] | Kramer PJ (1983). Water Relation of Plant. New York: Academic Press. pp.168-191. |
[22] |
Luo J, Zhou JJ, Zhang JZ (2018). Aux/ IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19,259.
DOI URL |
[23] | Mohammadian MA, Watling JR, Hill RS (2007). The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol 31,93-101. |
[24] | North GB, Nobel PS (1992). Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120,9-19. |
[25] | Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX (2019). Jasmonic acid signaling pathway in plants. Int J Mol Sci 20,2479. |
[26] | Seki M, Umezawa T, Urano K, Shinozaki K (2007). Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10,296-302. |
[27] | Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115,327-334. |
[28] | Takahashi F, Kuromori T, Sato H, Shinozaki K (2018). Regulatory gene networks in drought stress responses and resistance in plants. Adv Exp Med Biol 1081,189-214. |
[29] | Tardieu F (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4,17. |
[30] | Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016). Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67,4209- 4220. |
[31] |
Verma V, Ravindran P, Kumar PP (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16,86.
DOI URL |
[32] |
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36, 1971- 1984.
DOI URL |
[33] |
Vlot AC, Dempsey DMA, Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47,177-206.
DOI URL |
[34] |
Wybouw B, De Rybel B (2019). Cytokinin—a developing story. Trends Plant Sci 24,177-185.
DOI URL |
[35] |
Xiong LM, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14,S165- S183.
DOI URL |
[36] |
Zhao JZ, Yu NN, Ju M, Fan B, Zhang YJ, Zhu EG, Zhang MY, Zhang KW (2019). ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70,6277-6291.
DOI URL |
[37] |
Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca 2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154,1232-1243.
DOI URL |
[1] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[3] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[4] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[5] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[6] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[7] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[8] | 曾鑫海, 陈锐, 师宇, 盖超越, 范凯, 李兆伟. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6): 982-997. |
[9] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
[10] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[11] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
[12] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5): 799-812. |
[13] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[14] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
[15] | 刘裕强, 万建民. 寄主监控昆虫唾液蛋白平衡植物抗性与生长发育[J]. 植物学报, 2023, 58(3): 353-355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||