植物学报 ›› 2012, Vol. 47 ›› Issue (5): 474-482.DOI: 10.3724/SP.J.1259.2012.00474 cstr: 32102.14.SP.J.1259.2012.00474
许凤莲, 李姣姣, 杜春晖, 王娜, 张素巧*
收稿日期:
2011-10-28
修回日期:
2012-02-24
出版日期:
2012-09-01
发布日期:
2012-07-24
通讯作者:
张素巧
基金资助:
水稻类受体激酶OsWRL1调控雌配子体发育的机制研究及其同源基因的功能分析;水稻中WAK样受体激酶WRL1基因在生殖过程中的功能研究;水稻受体激酶WRL1基因在结实过程中的功能研究
Fenglian Xu, Jiaojiao Li, Chunhui Du, Na Wang, Suqiao Zhang*
Received:
2011-10-28
Revised:
2012-02-24
Online:
2012-09-01
Published:
2012-07-24
Contact:
Suqiao Zhang
摘要: 植物在进化过程中针对干旱、高盐和高低温等逆境胁迫形成了多种适应机制, 植物类受体激酶作为重要的细胞信号传递分子在植物生长和抗逆境胁迫中发挥着重要功能。该文发现一个具有S位点的类受体激酶基因OsSRL可能参与水稻(Oryza sativa)的干旱胁迫反应。利用RNAi技术降低OsSRL的表达水平后, 转基因植株抗旱性增强, 并表现出幼苗存活率、叶绿素含量及鲜重增加等表型。进一步的研究表明30%PEG和100 μmol·L–1ABA可诱导OsSRL基因表达, 利用RNAi降低其表达导致干旱诱导基因RAB16A及LEA3表达水平明显增加。表达模式分析发现OsSRL在胚芽、胚根、根、茎节以及花中表达。以上结果表明, OsSRL表达水平的降低增强植物的干旱耐受性, 其作为一个S-位点样类受体激酶可能参与了水稻对干旱胁迫的反应。
许凤莲, 李姣姣, 杜春晖, 王娜, 张素巧. 一个具有S位点的水稻类受体激酶OsSRL参与干旱胁迫反应. 植物学报, 2012, 47(5): 474-482.
Fenglian Xu, Jiaojiao Li, Chunhui Du, Na Wang, Suqiao Zhang. OsSRL, a Receptor-like Kinase with S-locus Site, Is Involved in Drought Tolerance in Rice. Chinese Bulletin of Botany, 2012, 47(5): 474-482.
Bartels D, Sunkar R (2005). Drought and salt tolerance in plants. Crit Rev Plant Sci 24, 23-58Cutler AJ, Krochko JE (1999). Formation and break down of ABA. Trends Plant Sci 4, 472–478Grefenc C, Harter K (2004). Plant two-component systems: Priciples, functions, complexity and cross talk. Planta 219, 733-742 Imamura A, Hanaki N, Umeda H, Nakamura A, Suzuki T, Ueguchi C, Mizuno T (1998). Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. 95, 2691-2696Islam MA, Du H, Ning J, Ye H, Xiong L (2009). Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70, 443–456.Jefferson RA (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5, 387–405Jose MP (2010). Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology 21, 1-12 Kazuo S, Kazuko Y, Motoaki S (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6, 410-417Lichtenthaler H (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148, 350–383Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.Martin GB, Brommonschenke LS, Chunwongse J (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432-1436Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006). Whole genome analysis of Oryza Sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142, 380-397Pastuglia M, Swarup R, Rocher A, Saindrenan P, Roby D, Dumas C, Cock JM (2002). Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene 282, 215-25Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011). The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in Arabidopsis. The Plant Cell ,23(3), 1138-52 Schopfer CR ,Nasrallah ME ,Nasrallah JB (1997). The male determinant of self-incompatibility in Brassica . Science 286, 1697-1700.Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D(2001). Guard cell signal transduction. Annu. Rev. Plant Physiol Plant Mol Biol 52, 627–658Shinozaki K, Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3, 217-223Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004). Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice. The Plant Cell 16, 1220–1234Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J(2009). The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J. Exp. Bot. 60, 1439–1463Stockinger EJ, Gilmour SJ, Thomashow MF (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci 94, 1035-1040Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000). The S receptor determines self-incompatibility in Brassica stigma . Nature 403, 913-916Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009). Type 2C protein phosphatases directly regulate abscisic acidactivated protein kinases in Arabidopsis. Proc Natl Acad Sci106, 17588-17593Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C, Merlot S (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 109: 69-79Walker JC (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Molecular Biology 26, 1599-1609Walker, JC, Zhang R (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345, 743–746Wang Q, Guan Y, Yu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67, 589–602Xiong LZ, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 165-183Yamaguchi-Shinozaki K, Shinozaki K (2005). Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10, 88–94Yang YZ, Peng H, Huang HM (2004). Large-scale production of enhancer trapping lines for rice functional genomic. Plant science 167 281-288Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in ABA- and Ca2+ -Mediated Stomatal Regulation in Response to Drought Stress. Plant Physiology,154, 1232-43 |
[1] | 赵凌, 管菊, 梁文化, 张勇, 路凯, 赵春芳, 李余生, 张亚东. 基于高密度Bin图谱的水稻苗期耐热性QTL定位[J]. 植物学报, 2025, 60(3): 1-0. |
[2] | 李新宇, 谷月, 徐非非, 包劲松. 水稻胚乳淀粉合成相关蛋白的翻译后修饰研究进展[J]. 植物学报, 2025, 60(2): 256-270. |
[3] | 樊蓓, 任敏, 王延峰, 党峰峰, 陈国梁, 程国亭, 杨金雨, 孙会茹. 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)[J]. 植物学报, 2025, 60(2): 186-203. |
[4] | 李建国, 张怡, 张文君. 水稻根系铁膜形成及对磷吸收的影响[J]. 植物学报, 2025, 60(1): 132-143. |
[5] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[6] | 姚瑞枫, 谢道昕. 水稻独脚金内酯信号感知的激活和终止[J]. 植物学报, 2024, 59(6): 873-877. |
[7] | 连锦瑾, 唐璐瑶, 张伊诺, 郑佳兴, 朱超宇, 叶语涵, 王跃星, 商文楠, 傅正浩, 徐昕璇, 吴日成, 路梅, 王长春, 饶玉春. 水稻抗氧化性状遗传位点挖掘及候选基因分析[J]. 植物学报, 2024, 59(5): 738-751. |
[8] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性[J]. 植物学报, 2024, 59(4): 558-573. |
[9] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 574-584. |
[10] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[11] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[12] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[13] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[14] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[15] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||