古旭雅, 林张曼, 胡思源, 李雪宁, 覃晓琳, 吴政熹, 李诺, 冯铭茵, 黄瑞华*
收稿日期:
2025-05-13
修回日期:
2025-08-05
出版日期:
2025-09-03
发布日期:
2025-09-03
通讯作者:
黄瑞华
基金资助:
Xuya Gu, Zhangman Lin, Siyuan Hu, Xuening Li, Xiaolin Qin, Zhengxi Wu, Nuo Li, Mingyin Feng, Ruihua Huang*
Received:
2025-05-13
Revised:
2025-08-05
Online:
2025-09-03
Published:
2025-09-03
Contact:
Ruihua Huang
摘要: 该研究旨在解析拟南芥WRI1基因在高温胁迫中的分子功能及其调控机制, 为作物耐热性改良提供理论依据。拟南芥WRI1(WRINKLED1)是AP2/EREBP类转录因子的一员, 调节糖酵解和脂肪酸生物合成途径之间的碳分配, 在植物生长、发育和应激反应中起着重要作用。通过构建野生型(WT)、WRI1突变体(wri1-4)和过表达株系(WRI1-OE), 结合RT-qPCR、表型分析等实验, 研究发现WRI1在热胁迫早期表达显著上调, 其过表达株系在高温下幼苗存活率较野生型提高且活性氧积累减少, 同时通过激活热激转录因子HSFA2及其下游HSP101基因, 减缓高温对种子萌发和根生长的抑制。研究表明, WRI1可以增强幼苗耐热性, 主要是通过调动核心调控因子“HSF-HSP”以及通过降低活性氧含量减少氧化损伤, 该文首次揭示了该基因在高温胁迫中的跨通路调控功能, 为研究植物响应高温胁迫的机制打开了新思路, 为农业生产培育耐高温品种提供重要的理论指导。
古旭雅, 林张曼, 胡思源, 李雪宁, 覃晓琳, 吴政熹, 李诺, 冯铭茵, 黄瑞华. WRI1基因在拟南芥幼苗耐热中的功能. 植物学报, DOI: 10.11983/CBB25085.
Xuya Gu, Zhangman Lin, Siyuan Hu, Xuening Li, Xiaolin Qin, Zhengxi Wu, Nuo Li, Mingyin Feng, Ruihua Huang. Analysis of the Function of WRI1 in Heat Stress of Arabidopsis Seedlings. Chinese Bulletin of Botany, DOI: 10.11983/CBB25085.
Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D., von Koskull-D?ring, P. (2004). Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29, 471-487. Cernac, A., Andre, C., Hoffmann-Benning, S., Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiology, 141(2), 745-757. Christou, A., Filippou, P., Manganaris, G.A., Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biology, 14(1), 42. Fei, W., Yang, S., Hu, J., Yang, F., Qu, G., Peng, D., Zhou, B. (2020). Research advances of WRINKLED1(WRI1) in plants. Functional Plant Biology, 47(3), 185. Focks, N. (1998). Wrinkled1: A Novel, Low-Seed-Oil Mutant of Arabidopsis with a Deficiency in the Seed-Specific Regulation of Carbohydrate Metabolism. Plant Physiology, 118(1), 91-101. Hu, J., Zhan, L., Xie, Y. (2022). Jiangxi Province's extreme high temperature variation characteristics and their impact on rice in recent 60 years. Hubei Agricultural Sciences, 61(9), 27-32, 40. Jin, L., Zhou, L., Cao, H., et al. (2022). Research progress of WRI1 regulating plant lipid synthesis. Chinese Journal of Oil Crop Sciences, 44(4), 687-698. Kotak, S., Larkindale, J., Lee, U., von Koskull-D?ring, P., Vierling, E., Scharf, K.D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10, 310-316. Liu, J.P. (2016). Molecular mechanism underlying ethylene stimulation of latex production in rubber tree (Hevea brasiliensis). Trees: Structure and Function, 30(6), 1913-1921. Miller, G., Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants, Annals of Botany, 98, 279-288. Nover, L., Bharti, K., D?ring, P., Mishra, S.K., Ganguli, A., Scharf, K.D. (2001). Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones, 6, 177-189. Peng, L., Wan, X., Huang, K., Pei, L., Xiong, J., Li, X., Wang, J. (2019). AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis. Biochemical and Biophysical Research Communications, 509(1), 281-286. Qi, H., Cai, X., Yang, H., Wang, J., Liu, Z., Yang, Y. (2016). Preliminary analysis of Arabidopsis AtHHR3 response to heat stress. Journal of Sichuan University (Natural Science Edition), 53(05), 1141-1146. Roldán-Arjona, T., Ariza, R.R. (2009). Repair and tolerance of oxidative DNA damage in plants. Mutation Research-Reviews in Mutation Research, 681(2-3), 169-179. Slimen, B., Najar, T., Ghram, A., et al. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage: A review. International Journal of Hyperthermia, 30(7), 513-523. Snell, P., Grimberg, ?., Carlsson, A.S., Hofvander, P. (2019). WRINKLED1 is subject to evolutionary conserved negative autoregulation. Frontiers in Plant Science, 10, 387. Wang, W., Vinocur, B., Shoseyov, O., Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. Yang, X., Huang, Y., Zhang, T., Huang, C. (2016). Research progress of Arabidopsis transcription activator AtWRI1. Biotechnology Bulletin, 32(06), 13-18. Yang, X., Huang, C., Wu, J., Huang, Y., Zhang, Q. (2016). Bioinformatics analysis of plant WRI1 gene. Molecular Plant Breeding, 14(05), 1140-1151. Yang, Y., Su, L., Fan, M. (2025). Research progress on plant pollen development in response to high temperature stress. World Tropical Agriculture Information, 2025(2), 16-18. |
[1] | 黄雨欣, 谢涛, 王省芬, 郭惠明, 程红梅, 马伯军, 陈析丰, 苏晓峰. 棉花抗黄萎病相关基因GhDIR1的初步功能分析[J]. 植物学报, 2025, 60(5): 1-0. |
[2] | 王子韵, 吕燕文, 肖钰, 吴超, 胡新生. 植物基因表达调控与进化机制研究进展[J]. 植物学报, 2025, 60(4): 621-639. |
[3] | 刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制[J]. 植物学报, 2025, 60(4): 551-561. |
[4] | 景艳军, 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[5] | 王涛, 冯敬磊, 张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J]. 植物学报, 2024, 59(6): 963-977. |
[6] | 闫恒宇, 李朝霞, 李玉斌. 高温对玉米生长的影响及中国耐高温玉米筛选研究进展[J]. 植物学报, 2024, 59(6): 1007-1023. |
[7] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[8] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性[J]. 植物学报, 2024, 59(4): 558-573. |
[9] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[10] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[11] | 段政勇, 丁敏, 王宇卓, 丁艺冰, 陈凌, 王瑞云, 乔治军. 糜子SBP基因家族全基因组鉴定及表达分析[J]. 植物学报, 2024, 59(2): 231-244. |
[12] | 孙永江, 王琪, 邵琪雯, 辛智鸣, 肖辉杰, 程瑾. 高温胁迫对植物光合作用的影响研究进展[J]. 植物学报, 2023, 58(3): 486-498. |
[13] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[14] | 吴楠, 覃磊, 崔看, 李海鸥, 刘忠松, 夏石头. 甘蓝型油菜EXA1的克隆及其对植物抗病的调控作用[J]. 植物学报, 2023, 58(3): 385-393. |
[15] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||