植物学报 ›› 2016, Vol. 51 ›› Issue (3): 290-295.doi: 10.11983/CBB15205

• 研究报告 • 上一篇    下一篇

水稻窄卷叶突变体nrl7的鉴定与基因定位

王伟, 王嘉宇*, 杨生龙, 刘进, 董晓雁, 王国骄, 陈温福   

  1. 沈阳农业大学水稻研究所, 东北粳稻遗传改良与优质高效生产协同创新中心, 沈阳 110866
  • 收稿日期:2015-11-16 修回日期:2016-01-25 出版日期:2016-05-01 发布日期:2016-05-24
  • 通讯作者: 王嘉宇 E-mail:ricewjy@126.com
  • 基金资助:

    教育部长江学者和创新团队发展计划(No.IRT13079)与国家自然科学基金(No.31201140)

Identification and Gene Mapping of the nrl7 Mutant in Rice

Wei Wang, Jiayu Wang*, Shenglong Yang, Jin Liu, Xiaoyan Dong, Guojiao Wang, Wenfu Chen   

  1. Collaborative Innovation Center for Genetic Improvement and Quality and Efficient Production of Japonica Rice in the Northeast of China, Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2015-11-16 Revised:2016-01-25 Online:2016-05-01 Published:2016-05-24
  • Contact: Jiayu Wang E-mail:ricewjy@126.com

摘要:

叶片的形态是理想株型的重要性状, 叶片适度卷曲能提高水稻(Oryza sativa)群体的光能利用率, 研究控制水稻叶片形态的相关基因能够进一步丰富株型理论。该研究在粳稻品系C275的群体中发现了1株自然变异的窄卷叶突变体nrl7(narrow rolled leaf 7)。与野生型相比, 突变体的叶片变窄且向内卷曲; 该突变体叶片连接中脉的泡状细胞严重变形, 中脉与小叶脉之间的维管束数量均减少至1个。此外, 突变体nrl7的株高、实粒数和实粒重均降低或减少, 分别为野生型的88.46%、69.77%和68.98%, 差异达极显著水平。叶片卷曲导致单叶光合速率减弱, 与野生型相比, 突变体的光合速率降低了17%, 达极显著水平。突变体nrI7叶片的气孔导度、胞间CO2浓度和蒸腾速率则与野生型相比无明显变化。利用图位克隆的方法将目的基因定位于水稻第3染色体短臂上的分子标记RM5444和MM1300之间, 物理距离约为185.14 kb。研究结果为该基因的克隆和进一步的功能分析奠定了基础。

关键词: 水稻, 窄卷叶突变体, 基因定位

Abstract:

Leaf morphology is an important trait of ideotype breeding; moderate rolling of leaves can enhance light-use efficiency. Study of genes that control leaf morphology can enrich the theory of ideal plant architecture in rice. We found a novel spontaneous mutant nrl7 with narrow rolled leaves in the japonica C275 population that can be stably inherited. Compared to the wild type, the leaves of nrl7 narrowed and rolled inward, the number of vascular bundles between the leaf midrib and the adjacent vein was reduced to one, and the bulliform cells showed significant morphological change. Nevertheless, the plant height, filled grains per panicle, and filled grain weight per panicle in the mutant were 88.46%, 69.77%, 68.98%, respectively, of that in the wild type. Photosynthetic rate was significantly higher in the mutant than the wild type and accounted for 17% of that in C275. Transpiration rate did not differ. Map-based cloning revealed NRL7 on chromosome 3 between markers RM5444 and MM1300, delimited to a 185.14 kb region. These results will lay a good
foundation for molecular cloning and functional analysis of NRL7.

Key words: rice, narrow rolled leaf mutant, gene mapping

[1] 郎有忠, 张祖建, 顾兴友, 等. 水稻卷叶性状生理生态效应的研究Ⅰ. 姿态、群体构成及广分布特征[J]. 作物学报, 2004, 30(8): 806-810
[2] 陆江锋, 郎有忠, 张祖建, 等. 水稻一组卷叶近等基因系的株形、群体结构和光合特性比较[J]. 扬州大学学报: 农业与生命科学版, 2005, 6(2): 56-60
[3] 陈宗祥, 潘学彪, 胡俊. 水稻卷叶性状及理想株型的关系[J]. 江苏农业研究, 2001, 22(4): 88-91
[4] 沈福成. 关于水稻卷叶性状在育种中利用的几点看法[J]. 贵州农业科学, 1983, (5): 6-8
[5] 陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展[J]. 中国稻米, 2010, 16(3): 1-4
[6] 余东, 吴海滨, 杨文韬, 等. 水稻单侧卷叶突变体B157遗传分析及基因初步定位[J]. 分子植物育种, 2008, 6(2): 220-226
[7] 曾生元, 郭 旻, 李 敏, 等. 个水稻动态窄叶突变体的鉴定和基因定位[J]. 科学通报, 2010, 55(21): 210-2111
[8] 潘存红, 李 磊, 陈宗祥, 等.一个水稻卷叶基因 rl(t)的精细定位[J].中国水稻科学, 2011, 25(5): 455-460
[9] Zou L P, Sun X H, hang Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011,156 ( 3 ) : 1589-1602
[10] 王德仲, 桑贤春, 游小庆, 等. 水稻细卷叶突变体 nrl2(t)的遗传分析和基因定位[J]. 作物学报, 2011, 37(7): 1159-1166
[11] Shi Z Y, Wang J, Wan X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226 (1) : 99-108
[12] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7controls leaf shape mediated by auxin in rice[J]. Molecular Genetics Genomics: MGG, 2008, 279(5): 499-507
[13] Qi J, Qian Q, Bu Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1947-195
[14] 李仕贵, 马玉清, 何平, 等. 一个未知的卷叶基因的识别和定位[J]. 四川农业大学学报, 1998, 16(4): 391-393
[15] 邵元健, 陈宗祥, 张亚芳, 等. 一个水稻卷叶主效 QTL的定位及其物理图谱的构建[J]. 遗传学报, 2005, 32(5): 501-506
[16] Xiang J J, Zhang G H, Qian Q, et al. SEMI-ROLLED LEAF1 encodes a putative glycosyl phosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiology, 2012, 159(4): 1488-1500
[17] Shi Y F, Chen J, Liu W Q, et al. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice( Oryza sativa L.) [J]. Science in China Series C: Life Sciences, 2009, 52(9): 885-890
[18] Yan C J, Yan S, Zhang Z Q, et al.Genetic analysis and gene fine mapping for a rice novel mutant(rl9(t)) with rolling leaf character[J]. Chinese Science Bulletin,2006, 51(1): 63-69
[19] 罗远章, 赵芳明, 桑贤春, 等. 水稻新型卷叶突变体rl12(t)的遗传分析和基因定[J]. 作物学报, 2009, 35(11): 1967-1972
[20] Fang L K, Zhao F M, Cong Y F, et al. Rolling-leaf14 is a 2OG-Fe (Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal, 2012, 10(5): 524-532
[21] Cho S H, Yoo S C, Zhang H T, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A( OsWOX3A) and function in leaf, spikelet, tiller and lateral root development[J]. New Phytologist, 2013, 198(4): 1071-1084
[22] Hu J, Zhu L, Zeng D L, et al. Identification and characterization of NARROW and ROLLED LEAF1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Molecular Biology, 2010, 73(3): 283-292
[23] 高艳红, 吕川根, 王茂青, 等. 水稻卷叶性状QTL的初步定位[J]. 江苏农业学报, 2007, 23(1): 5-10
[24] 李和平. 植物显微技术[M]. 北京: 科学出版社, 2009: 9-48
[25] Rogers S O, Bendich A J. Extraction of DNA from plant tissues[J]. Plant Mol Biol Manual, 1989, pp73-83
[26] Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001511
[27] Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development[J]. Plant Mol Biol, 2009, 69(4): 347-360
[28] Micol L J, Hake S. The development of plant leaves[J]. Plant Physiol, 2003, 131(2): 389-394
[29] 严 松, 严长杰, 顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9): 1127-1135
[30] Shao Y J, Pan C H, Chen Z X, et al. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.) [J]. Chin Sci Bull, 2005, 50(21): 2466-2472
[31] Zhang G H, Xu Q, Zhu X D, et al. SHALLOTLIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. Plant Cell, 2009, 2(3): 719-735
[32] Zhang, Z.H., Deng, Y.J., Tan, J., et al. A genome-wide microsatellite polymorphism database for the Indica and Japonica rice[J]. DNA Research, 2007, 14(1): 37-45
[33] 陈宗祥, 胡俊, 陈刚, 潘学彪. RL(t)卷叶基因对杂交稻经济性状的影响[J].作物学报, 2004, 30(5): 465-69

[1] 章怡兰 林雪 吴仪 李梦佳 张晟婕 路梅 饶玉春 王跃星. 水稻根系遗传与育种研究进展-修改稿[J]. 植物学报, 2020, 55(3): 0-0.
[2] 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8.
[3] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[4] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[5] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[6] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[7] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[8] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[9] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[10] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[11] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[12] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[13] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[14] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[15] 杨德卫,王莫,韩利波,唐定中,李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展[J]. 植物学报, 2019, 54(2): 265-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于凤兰 王静萍 李京民 单雪琴. 乌桕桕脂中甾醇和其他成分分离鉴定[J]. 植物学报, 1989, 6(02): 121 -123 .
[2] 李爱芬 陈敏 周百成. 褐藻光合作用色素—蛋白质复合物——研究进展和问题[J]. 植物学报, 1999, 16(04): 365 -371 .
[3] 陈晓梅 郭顺星. 植物抗病性物质的研究进展[J]. 植物学报, 1999, 16(06): 658 -664 .
[4] 李继泉 金幼菊 沈应柏 洪蓉. 环境因子对植物释放挥发性化合物的影响[J]. 植物学报, 2001, 18(06): 649 -656 .
[5] (王伟杰和徐昌杰编译). 天然类胡萝卜素胭脂树素的生物合成[J]. 植物学报, 2005, 22(增刊): 157 .
[6] 李建霞, 张出兰, 夏晓飞, 赵良成. 植物冰冻切片条件的优化及其与石蜡切片在组织化学应用中的比较[J]. 植物学报, 2013, 48(6): 643 -650 .
[7] 蒋样明, 崔伟宏, 董前林. 基于空间技术的烤烟种植生态环境综合评价分析[J]. 植物生态学报, 2012, 36(1): 47 -54 .
[8] 胡承彪, 朱宏光, 韦源连. 不同生态地理区域杉木人工林土壤微生物及生化活性的研究[J]. 植物生态学报, 1991, 15(4): 303 -311 .
[9] 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231 -242 .
[10] 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389 -401 .