植物学报 ›› 2016, Vol. 51 ›› Issue (3): 283-286.doi: 10.11983/CBB16070

• • 上一篇    下一篇

RNA 解旋酶调控rRNA内稳态: 水稻耐热 新机制、分子育种新资源

胡时开1,2, 钱前1,2*()   

  1. 1中国水稻研究所, 水稻生物学国家重点实验室, 杭州 310006
    2中国农业科学院深圳农业基因组研究所, 深圳 518120
  • 收稿日期:2016-04-04 接受日期:2016-04-26 出版日期:2016-05-01 发布日期:2016-05-24
  • 通讯作者: 钱前 E-mail:qianqian188@hotmail.com
  • 作者简介:? 共同第一作者

DEAD-box RNA Helicase Regulate rRNA Homeostasis: New Mechanism on Rice Thermotolerance, New Prospective on Rice Molecular Breeding

Shikai Hu1, 2, Qian Qian1, 2*   

  1. 1State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
    2Agriculture Genome Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
  • Received:2016-04-04 Accepted:2016-04-26 Online:2016-05-01 Published:2016-05-24
  • Contact: Qian Qian E-mail:qianqian188@hotmail.com
  • About author:? These authors contributed equally to this paper

摘要:

高温热害是影响水稻(Oryza sativa)产量形成的重要限制因子。DEAD-box RNA解旋酶在核糖体RNA前体加工及植物抗逆中扮演着重要角色。最近, 中国科学家在DEAD-box RNA解旋酶调控水稻耐热性分子机理研究方面取得了突破性进展。

关键词: DEAD-box RNA解旋酶, 内稳态, 核糖体RNA (rRNA), 水稻, 耐热性

Abstract:

High temperature stress is a significant factor limiting rice growth and yield formation. DEAD-box RNA helicase plays a vital role in the processing of pre-rRNA and plant stresses response. Recently, Chinese scientists have great progress in the molecular mechanism of regulating thermo-tolerant of DEAD-box RNA helicase in rice.

Key words: DEAD-box RNA helicase, homeostasis, ribosomal RNA (rRNA), rice, thermotolerance

[1] Amin M, Elias S, Hossain A, Ferdousi A, Rahman M, Tuteja N, Seraj Z (2012). Over-expression of a DEAD- box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.).Mol Breed 30, 345-354.
[2] Bita C, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops.Front Plant Sci 4, 273.
[3] Challinor A, Watson J, Lobell D, Howden S, Smith D, Chhetri N (2014). A meta-analysis of crop yield under climate change and adaptation.Nat Clim Chang 4, 287-291.
[4] Chen Y, Potratz J, Tijerina P, Del Campo M, Lambowitz A, Russell R (2008). DEAD-box proteins can completely separate an RNA duplex using a single ATP.Proc Natl Acad Sci USA 105, 20203-20208.
[5] Cordin O, Banroques J, Tanner N, Linder P (2006). The DEAD-box protein family of RNA helicases.Gene 367, 17-37.
[6] Dragon F, Gallagher J, Compagnone-Post P, Mitchell B, Porwancher K, Wehner K, Wormsley S, Settlage R, Shabanowitz J, Osheim Y, Beyer A, Hunt DF, Baserga S (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis.Nature 417, 967-970.
[7] Gong Z, Dong C, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis.Plant Cell 17, 256-267.
[8] Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.Proc Natl Acad Sci USA 99, 11507-11512.
[9] Granneman S, Bernstein K, Blelchert F, Baserga S (2006). Comprehensive mutational analysis of yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis.Mol Cell Biol 26, 1183-1194.
[10] Kang H, Park S, Kwak K (2012). Plant RNA chaperones in stress response.Trends Plant Sci 18, 100-106.
[11] Kim J, Kim K, Oh T, Park C, Kang H (2008). Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49, 1563-1571.
[12] Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H, Dong N, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J, Gao J, Lin H (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.Nat Genet 47, 827-833.
[13] Linder P, Owttrim G (2009). Plant RNA helicases: linking aberrant and silencing RNA.Trends Plant Sci 14, 344-352.
[14] Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015). COLD1 confers chilling tolerance in rice.Cell 160, 1209-1221.
[15] Macovei A, Tuteja N (2012). MicroRNAs targeting DEAD- box helicases are involved in salinity stress response in rice (Oryza sativa L.).BMC Plant Biol 12, 183.
[16] McClung C, Davis S (2010). Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing.Curr Biol 20, R1086-R1092.
[17] Mittler R, Finka A, Goloubinoff P (2012). How do plants feel the heat?Trends Biochem Sci 37, 118-125.
[18] Owttrim G (2006). RNA helicases and abiotic stress.Nucleic Acids Res 34, 3220-3230.
[19] Owttrim G (2013). RNA helicases: diverse roles in prokaryotic response to abiotic stress.RNA Biol 1, 96-110.
[20] Pyle A (2008). Translocation and unwinding mechanisms of RNA and DNA helicases.Annu Rev Biophys 37, 317-336.
[21] Ray D, Gerber J, MacDonald G, West P (2015). Climate variation explains a third of global crop yield variability.Nat Commun 6, 5989.
[22] Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z (2015). Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato.Nat Biotechnol 33, 996-1003.
[23] Tuteja N, Sahoo R, Garg B, Tuteja R (2013). OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. ‘IR64’).Plant J 76, 115-127.
[24] Umate P, Tuteja R, Tuteja N (2010). Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human.Plant Mol Biol 73, 449-465.
[25] Venema J, Tollervey D (1995). Processing of pre-ribosomal RNA in Saccharomyces cerevisiae.Yeast 11, 1629-1650.
[26] Wahid A, Gelani S, Ashraf M, Foolad M (2007). Heat tolerance in plants: an overview.Environ Exp Bot 61, 199-223.
[27] Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y (2016). Nucleolar DEAD-Box RNA helicase TOGR1 re- gulates thermotolerant growth as a pre-rRNA chaperone in rice.PLoS Genet 12, e1005844.
[1] 章怡兰 林雪 吴仪 李梦佳 张晟婕 路梅 饶玉春 王跃星. 水稻根系遗传与育种研究进展-修改稿[J]. 植物学报, 2020, 55(3): 0-0.
[2] 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 5-8.
[3] 陈婵,张仕吉,李雷达,刘兆丹,陈金磊,辜翔,王留芳,方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671.
[4] 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6): 482-489.
[5] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[6] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[7] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[8] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[9] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[10] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[11] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[12] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[13] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[14] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[15] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕忠恕. 生长调节物质与植物水分状况的关系[J]. 植物学报, 1985, 3(04): 1 -6 .
[2] 黎大爵 韩孕周 王利平. 红花种质资源的研究IV、种子休眠特性的种质筛选[J]. 植物学报, 1990, 7(02): 50 -52 .
[3] 吴尚 吴弘 吴元. 深切怀念亲爱的三姑[J]. 植物学报, 1999, 16(增刊): 45 -46 .
[4] 刘家尧 骆爱玲 梁峥. TD-PAGE中若干技术的改进[J]. 植物学报, 1998, 15(03): 69 -72 .
[5] 李凌浩 陈佐忠. 草地生态系统碳循环及其对全球变化的响应I 碳循环的分室模型、碳输入与贮量[J]. 植物学报, 1998, 15(02): 14 -22 .
[6] 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展[J]. 植物学报, 2014, 49(2): 209 -220 .
[7] 《植物学报》编辑部. 从《通报》到《学报》[J]. 植物学报, 2013, 48(1): 4 -5 .
[8] 杨继华 薛妙男 隆景峰. 沙田柚自交、异交花柱蛋白质的比较分析[J]. 植物学报, 1996, 13(专辑): 45 .
[9] 舒群芳 赵路 李文彬 张利明 孙勇如. 植物蛋白电泳分析的方法学研究及技术改进[J]. 植物学报, 1998, 15(06): 73 -78 .
[10] 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布[J]. 植物生态学报, 2007, 31(6): 1079 -1091 .