植物学报 ›› 2019, Vol. 54 ›› Issue (3): 285-287.doi: 10.11983/CBB19060

• 热点评 •    下一篇

根际微生物促进水稻氮利用的机制

王孝林,王二涛()   

  1. 中国科学院上海生命科学研究院植物生理生态研究所, 上海 200032
  • 收稿日期:2019-03-31 接受日期:2019-04-02 出版日期:2019-05-01 发布日期:2019-05-20
  • 通讯作者: 王二涛 E-mail:etwang@sibs.ac.cn

NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice

Wang Xiaolin,Wang Ertao()   

  1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-03-31 Accepted:2019-04-02 Online:2019-05-01 Published:2019-05-20
  • Contact: Wang Ertao E-mail:etwang@sibs.ac.cn

摘要:

根际微生物影响植物的生长及环境适应性。不同种属、不同种群的植物影响其环境微生物群落; 反之, 根际微生物也影响宿主植物生长发育与生态适应性。植物与根际微生物的互作现象及其机制, 是生命科学研究关注的热点, 也是农业微生物利用的关键问题。近期, 中国科学家在该领域取得了突破性进展。通过对不同籼稻(Oryza sativa subsp. indica)和粳稻(O. sativa subsp. japonica)品种的根际微生物组进行研究, 发现籼稻根际比粳稻根际富集更多参与氮代谢的微生物群落, 且该现象与硝酸盐转运蛋白基因NRT1.1B在籼粳之间的自然变异相关联。通过对籼稻接种籼稻根际特异富集的微生物群体可以提高前者对有机氮的利用, 促进其生长。该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景。

关键词: 水稻, NRT1.1B, 根际微生物, 氮素利用

Abstract:

Root-associated microbial communities in the soil play fundamental roles in plant nutrition uptake and fitness. However, how plants shape root microbial communities and how the microbes affect the fitness of their hosts remain elusive. Recently, Chinese scientists have made a breakthrough discovery that the nitrogen-use efficiency between indica and japonica rice varieties is associated with different root microbiota in rice. Nitrogen metabolism is greatly enriched in indica-enriched bacteria as compared with japonica-enriched bacteria. Rice NRT1.1B, a nitrogen sensor contributing to nitrogen use divergence between rice subspecies, is associated with the recruitment of these bacterial taxa. Inoculation of the japonica variety with indica-enriched bacteria can improve rice growth in organic nitrogen conditions in the SynCom experimental system. This work highlights the links between root microbiota and nitrogen use in rice and could be exploited to modulate the root microbiota that increase crop productivity and sustainability.

Key words: rice, NRT1.1B, root microbiota, nitrogen use

图1

水稻通过NRT1.1B基因协同根系微生物利用土壤氮元素籼稻比粳稻富集更多参与氮代谢的根系微生物。这些微生物将有机氮转化为氨态氮, 提高水稻氮元素利用效率。籼稻和粳稻特异富集的根系微生物与NRT1.1B基因相关联。"

[1] Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J ( 2016). Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci USA 113, 2312-2317.
doi: 10.1073/pnas.1523264113 pmid: 26755604
[2] Bender SF, Wagg C, van der Heijden MGA ( 2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31, 440-452.
doi: 10.1016/j.tree.2016.02.016 pmid: 26993667
[3] Berendsen RL, Pieterse CM, Bakker PA ( 2012). The rhizosphere microbiome and plant health. Trends Plant Sci 17, 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[4] Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P ( 2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.
doi: 10.1038/nature11336 pmid: 22859207
[5] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P ( 2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698
[6] Chaparro JM, Sheflin AM, Manter DK, Vivanco JM ( 2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48, 489-499.
doi: 10.1007/s00374-012-0691-4
[7] Duan L, Liu HB, Li XH, Xiao JH, Wang SP ( 2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant 152, 486-500.
doi: 10.1111/ppl.12192 pmid: 24684436
[8] Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V ( 2015). Structure, variation, and assembly of the root- associated microbiomes of rice. Proc Natl Acad Sci USA 112, E911-E920.
doi: 10.1073/pnas.1414592112 pmid: 25605935
[9] Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC ( 2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[10] Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A ( 2018). Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8, 12-26.
doi: 10.1016/j.rhisph.2018.08.003
[11] Oldroyd GED, Murray JD, Poole PS, Downie JA ( 2011). The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45, 119-144.
doi: 10.1146/annurev-genet-110410-132549 pmid: 21838550
[12] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT ( 2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112, E5013-E5020.
doi: 10.1073/pnas.1505765112 pmid: 26305938
[13] Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET ( 2018). Core microbiomes for sustainable agroecosystems. Nat Plants 4, 247-257.
doi: 10.1038/s41477-018-0139-4
[14] Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, Gonzalez-Pena A, Peiffer J, Koren O, Shi Q, Knight R, Glavina del Rio T, Tringe SG, Buckler ES, Dangl JL, Ley RE ( 2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA 115, 7368-7373.
doi: 10.1073/pnas.1800918115
[15] Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan GY, Yuan L, Garrido-Oter R, Chu C, Bai Y ( 2019). NRT1.1B contributes the association of root microbiota and nitrogen use in rice. Nat Biotechnol doi: https://doi.org/10.1038/s41587-019-0104-4.
[1] 张璐 何新华. C3和C4植物的氮素利用机制[J]. 植物学报, 2020, 55(2): 0-0.
[2] 晁代印. “绿色革命”新进展:赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 0-0.
[3] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[4] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[5] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[6] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[7] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[8] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[9] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[10] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[11] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[12] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[13] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[14] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[15] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖景平 吴七根. 九翅豆蔻种子的解剖学和组织化学研究[J]. 植物学报, 1994, 11(专辑): 91 .
[2] 钱迎倩. 生物多样性的几个问题(续)[J]. 植物学报, 1998, 15(06): 1 -18 .
[3] 张秀娟 梅莉 王政权 韩有志. 细根分解研究及其存在的问题[J]. 植物学报, 2005, 22(02): 246 -254 .
[4] 程龙军 郭得平 葛红娟. 甘薯块根特异蛋白——Sporamin的研究进展[J]. 植物学报, 2001, 18(06): 672 -677 .
[5] 汤彦承. 国际植物命名法规简介VII[J]. 植物学报, 1984, 2(06): 49 -54 .
[6] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90 -99 .
[7] 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268 -1276 .
[8] 张金屯, Pickett S. T. A. “城-郊-乡”森林生态样带植被变化梯度分析[J]. 植物生态学报, 1998, 22(5): 392 -397 .
[9] 季方, 马英杰, 樊自立. 塔里木河冲积平原胡杨林的土壤水分状况研究[J]. 植物生态学报, 2001, 25(1): 17 -21 .
[10] 蒋馥蔚, 江洪, 李巍, 余树全, 曾波, 王艳红. 不同起源时期的3种被子植物对酸雨胁迫响应的光合生理生态特征[J]. 植物生态学报, 2009, 33(1): 125 -133 .