植物学报 ›› 2019, Vol. 54 ›› Issue (3): 285-287.doi: 10.11983/CBB19060

• 热点评 •    下一篇

根际微生物促进水稻氮利用的机制

王孝林,王二涛()   

  1. 中国科学院上海生命科学研究院植物生理生态研究所, 上海 200032
  • 收稿日期:2019-03-31 接受日期:2019-04-02 出版日期:2019-05-01 发布日期:2019-05-20
  • 通讯作者: 王二涛 E-mail:etwang@sibs.ac.cn

NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice

Wang Xiaolin,Wang Ertao()   

  1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-03-31 Accepted:2019-04-02 Online:2019-05-01 Published:2019-05-20
  • Contact: Wang Ertao E-mail:etwang@sibs.ac.cn

摘要:

根际微生物影响植物的生长及环境适应性。不同种属、不同种群的植物影响其环境微生物群落; 反之, 根际微生物也影响宿主植物生长发育与生态适应性。植物与根际微生物的互作现象及其机制, 是生命科学研究关注的热点, 也是农业微生物利用的关键问题。近期, 中国科学家在该领域取得了突破性进展。通过对不同籼稻(Oryza sativa subsp. indica)和粳稻(O. sativa subsp. japonica)品种的根际微生物组进行研究, 发现籼稻根际比粳稻根际富集更多参与氮代谢的微生物群落, 且该现象与硝酸盐转运蛋白基因NRT1.1B在籼粳之间的自然变异相关联。通过对籼稻接种籼稻根际特异富集的微生物群体可以提高前者对有机氮的利用, 促进其生长。该研究揭示了籼稻和粳稻根际微生物分化的分子基础, 展示了利用根际微生物提高水稻营养高效吸收的应用前景。

关键词: 水稻, NRT1.1B, 根际微生物, 氮素利用

Abstract:

Root-associated microbial communities in the soil play fundamental roles in plant nutrition uptake and fitness. However, how plants shape root microbial communities and how the microbes affect the fitness of their hosts remain elusive. Recently, Chinese scientists have made a breakthrough discovery that the nitrogen-use efficiency between indica and japonica rice varieties is associated with different root microbiota in rice. Nitrogen metabolism is greatly enriched in indica-enriched bacteria as compared with japonica-enriched bacteria. Rice NRT1.1B, a nitrogen sensor contributing to nitrogen use divergence between rice subspecies, is associated with the recruitment of these bacterial taxa. Inoculation of the japonica variety with indica-enriched bacteria can improve rice growth in organic nitrogen conditions in the SynCom experimental system. This work highlights the links between root microbiota and nitrogen use in rice and could be exploited to modulate the root microbiota that increase crop productivity and sustainability.

Key words: rice, NRT1.1B, root microbiota, nitrogen use

图1

水稻通过NRT1.1B基因协同根系微生物利用土壤氮元素籼稻比粳稻富集更多参与氮代谢的根系微生物。这些微生物将有机氮转化为氨态氮, 提高水稻氮元素利用效率。籼稻和粳稻特异富集的根系微生物与NRT1.1B基因相关联。"

[1] Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J ( 2016). Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci USA 113, 2312-2317.
doi: 10.1073/pnas.1523264113 pmid: 26755604
[2] Bender SF, Wagg C, van der Heijden MGA ( 2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31, 440-452.
doi: 10.1016/j.tree.2016.02.016 pmid: 26993667
[3] Berendsen RL, Pieterse CM, Bakker PA ( 2012). The rhizosphere microbiome and plant health. Trends Plant Sci 17, 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[4] Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P ( 2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.
doi: 10.1038/nature11336 pmid: 22859207
[5] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P ( 2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698
[6] Chaparro JM, Sheflin AM, Manter DK, Vivanco JM ( 2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48, 489-499.
doi: 10.1007/s00374-012-0691-4
[7] Duan L, Liu HB, Li XH, Xiao JH, Wang SP ( 2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant 152, 486-500.
doi: 10.1111/ppl.12192 pmid: 24684436
[8] Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V ( 2015). Structure, variation, and assembly of the root- associated microbiomes of rice. Proc Natl Acad Sci USA 112, E911-E920.
doi: 10.1073/pnas.1414592112 pmid: 25605935
[9] Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC ( 2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[10] Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A ( 2018). Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8, 12-26.
doi: 10.1016/j.rhisph.2018.08.003
[11] Oldroyd GED, Murray JD, Poole PS, Downie JA ( 2011). The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45, 119-144.
doi: 10.1146/annurev-genet-110410-132549 pmid: 21838550
[12] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT ( 2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112, E5013-E5020.
doi: 10.1073/pnas.1505765112 pmid: 26305938
[13] Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET ( 2018). Core microbiomes for sustainable agroecosystems. Nat Plants 4, 247-257.
doi: 10.1038/s41477-018-0139-4
[14] Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, Gonzalez-Pena A, Peiffer J, Koren O, Shi Q, Knight R, Glavina del Rio T, Tringe SG, Buckler ES, Dangl JL, Ley RE ( 2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA 115, 7368-7373.
doi: 10.1073/pnas.1800918115
[15] Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan GY, Yuan L, Garrido-Oter R, Chu C, Bai Y ( 2019). NRT1.1B contributes the association of root microbiota and nitrogen use in rice. Nat Biotechnol doi: https://doi.org/10.1038/s41587-019-0104-4.
[1] 田怀东 李菁 田保华 牛鹏飞 李珍 岳忠孝 屈雅娟 姜建芳 王广元 岑慧慧 李南 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 0-0.
[2] 王跃星 饶玉春 焦然 周纯 林晗 徐娜 胡娟 胡萍 吴先美. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 0-0.
[3] 刘进 姚晓云 余丽琴 李慧 周慧颖 王嘉宇 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 0-0.
[4] 徐云远 种康. 利用低温水浴鉴定水稻苗期耐冷性[J]. 植物学报, 2019, 54(4): 0-0.
[5] 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 0-0.
[6] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[7] 栗露露,殷文超,牛梅,孟文静,张晓星,童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[8] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[9] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[10] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
[11] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报, 2018, 53(6): 848-855.
[12] 鲁丹, 王丽, 宋凡, 陶菊红, 张大兵, 袁政. 水稻OsJMJ718基因可选择性多聚腺苷酸化序列的 克隆及生殖发育期表达模式[J]. 植物学报, 2018, 53(5): 594-602.
[13] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
[14] 黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53(4): 451-455.
[15] 马路, 方媛, 肖飒清, 周纯, 金哲伦, 叶雯澜, 饶玉春. 水稻条斑病抗性QTL的挖掘及相关基因的表达[J]. 植物学报, 2018, 53(4): 468-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIANG Shi-Chu, DONG Ming. Spatial Heterogeneity of Population Structure of the Mangrove Bruguiera gymnorrhiza at Yingluo Bay, South-China Coast[J]. Journal of Integrative Plant Biology, 2004, 46(9): 1015 -1024 .
[2] Živa Fišer Pečnikar, Nataša Fujs, Robert Brus, Dalibor Ballian, Elena Buzan. [J]. Journal of Systematics and Evolution, 2017, 55(5): 437 -445 .
[3] 杨志青, 陈报章, 查天山, 贾昕. 城市绿地生态系统多角度高光谱光化学反射植被指数与光能利用率的关系[J]. 植物生态学报, 2016, 40(10): 1077 -1089 .
[4] 朱华 王洪. 西双版纳植物区系资料(2)[J]. Plant Diversity, 1994, 16(01): 1 -3 .
[5] . [J]. Journal of Plant Ecology, 2019, 12(3): 564 -573 .
[6] 王庆锁, 董学军, 陈旭东, 杨宝珍. 油蒿群落不同演替阶段某些群落特征的研究[J]. 植物生态学报, 1997, 21(6): 531 -538 .
[7] Yu Xu, Hong-Bin Li and Yu-Xian Zhu. Molecular Biological and Biochemical Studies Reveal New Pathways Important for Cotton Fiber Development[J]. Journal of Integrative Plant Biology, 2007, 49(1): 69 -74 .
[8] 石培礼, 钟章成, 李旭光. 四川桤柏混交林生物量的研究[J]. 植物生态学报, 1996, 20(6): 524 -533 .
[9] 李世英, 张新时. 新疆植被水平带的划分原则和特征[J]. 植物生态学报, 1964, (2): 180 -189 .
[10] 王健铭, 王文娟, 李景文, 冯益明, 吴波, 卢琦. 中国西北荒漠区植物物种丰富度分布格局及其环境解释[J]. 生物多样性, 2017, 25(11): 1192 -1201 .