植物学报 ›› 2019, Vol. 54 ›› Issue (5): 606-619.doi: 10.11983/CBB19053

• 研究报告 • 上一篇    下一篇

水稻早衰突变体LS-es1的基因定位及候选基因分析

周纯1,焦然1,胡萍2,林晗1,胡娟1,徐娜1,吴先美2,饶玉春1,*(),王跃星2,*()   

  1. 1. 浙江师范大学化学与生命科学学院, 金华 321004
    2. 中国水稻研究所水稻生物学国家重点实验室, 杭州 310006
  • 收稿日期:2019-03-20 接受日期:2019-06-20 出版日期:2019-09-01 发布日期:2020-03-10
  • 通讯作者: 饶玉春,王跃星 E-mail:ryc@zjnu.cn;wangyuexing@caas.cn
  • 基金资助:
    国家重大科技专项(2016ZX08009003-003-008);浙江省粮食新品种选育专项(No.2016C02050-1);浙江省科协育才工程(No.2017YCGC008);水稻生物学国家重点实验室开放项目(No.160106)

Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1

Zhou Chun1,Jiao Ran1,Hu Ping2,Lin Han1,Hu Juan1,Xu Na1,Wu Xianmei2,Rao Yuchun1,*(),Wang Yuexing2,*()   

  1. 1. College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
    2. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
  • Received:2019-03-20 Accepted:2019-06-20 Online:2019-09-01 Published:2020-03-10
  • Contact: Rao Yuchun,Wang Yuexing E-mail:ryc@zjnu.cn;wangyuexing@caas.cn

摘要:

衰老是植物发育末期自主发生且不可逆的适应性反应, 叶片早衰相关分子机制研究对水稻(Oryza sativa)遗传改良以及抗衰老品种培育有重要意义。LS-es1是通过EMS诱变粳稻品种TP309获得的稳定遗传的早衰突变体。对LS-es1及其野生型的表型观察和生理生化分析表明, LS-es1叶片中积累了大量活性氧且细胞死亡更多, 同时LS-es1与产量相关的农艺性状均显著下降, 这也验证了LS-es1早衰的特征。对LS-es1及其野生型幼苗进行外源激素处理, 结果表明LS-es1对水杨酸(SA)、脱落酸(ABA)和茉莉酸甲酯(MeJA)更敏感。用图位克隆方法将LS-es1基因定位在水稻第7号染色体长臂46.2 kb区间内, 该区间共包括8个开放阅读框(ORF)。对该区间内的基因进行生物信息学分析, 结果发现Os07g0275300Os07g0276000两个候选功能基因与早衰途径相关, 并且这2个基因的表达量在野生型和突变体中差异较大。研究结果为进一步克隆LS-es1基因并深入研究其生物学功能奠定了基础。

关键词: 水稻, 早衰, 生理特征, 精细定位, 候选基因

Abstract:

Senescence is an autonomous and irreversible adaptive response at the end of plant development. The molecular mechanism related to premature senescence of leaves is important for rice genetic improvement and breeding of anti-aging varieties. LS-es1 is a stable hereditary premature early senescence mutant obtained by EMS mutagenesis of indica variety TP309. Phenotypic observation, physiological and biochemical analysis of LS-es1 and its wild type TP309 found that LS-es1 accumulated a large amount of reactive oxygen species and more cell death, while the yield-related agronomic traits of LS-es1 were significantly decreased compared to wild type TP309, which also verified the early senescence characteristics of LS-es1. Exogenous hormone treatment of LS-es1 and TP309 seedlings showed that LS-es1 was more sensitive to salicylic acid (SA), abscisic acid (ABA) and methyl jasmonate (MeJA). The LS-es1 gene was mapped to the 46.2 kb region of the long arm of rice chromosome 7 by map-based cloning, which included 8 open reading frames (ORFs). Bioinformatics analysis of the genes in this interval revealed that two candidate functional genes, Os07g0275300 and Os07g0276000, were associated with the early senescence pathway, and the expression levels of these two genes were significantly different between wild type and mutant. The results laid the foundation for further cloning of the LS-es1 gene and in-depth study of its biological function.

Key words: rice, early senescence, physiological characteristics, fine mapping, candidate genes

表1

基因定位及qRT-PCR所用引物序列"

Primer name Forward primer (5'-3') Reverse primer (5'-3')
InDel-1 AGCGGGGATGGAGATGATG CTTGCCTCACACCAGATCTG
InDel-2 GGCGCCTTTGTTCCATAGTT GAGGAGCCAGTGGTAGCAG
InDel-3 CGTTTTTACAACCAATTTTGGAA CCATCTTCTACCTCCGGACA
InDel-4 GATTGGATTGGTTGCTCGCT AACAGCGAATCGAGATGCAC
InDel-5 TTACTGCTGCCGTTGTTTCA TTGTGGACCTCCAGGATCAG
SGR AGGGGTGGTACAACAAGCTG GCTCCTTGCGGAAGATGTAG
Osh36 GCACGGAGGCGAACGA TTGAGCGGTAGCACCCATT
Osl85 GAGCAACGGCGTGGAGA GCGGCGGTAGAGGAGATG
OsNAP CAAGAAGCCGAACGGTTC GTTAGAGTGGAGCAGCAT
Actin CAGGCCGTCCTCTCTCTGTA AAGGATAGCATGGGGGAGAG

图1

水稻野生型(WT) TP309和突变体LS-es1的表型特征 (A) 苗期表型; (B) 分蘖期表型; (C) 成熟期表型。Bars=6 cm"

表2

水稻野生型TP309和突变体LS-es1的农艺性状比较"

Agronomic traits TP309 LS-es1
Effective number of panicle 13.40±5.41 8.20±0.84
Flag leaf length (cm) 39.46±8.16 35.68±4.08
Secondary branch number 29.80±6.87 18.00±4.47*
Tiller number 16.40±5.46 11.40±2.70
Filled grain number per panicle 169.60±8.08 125.60±24.83**
Seed-setting rate (%) 81.01±6.98 64.76±17.23

图2

水稻野生型(WT) TP309和突变体LS-es1的农艺性状比较 (A) 穗长; (B) 株高; (C) 一次枝梗数; (D) 千粒重。*和**分别表示TP309与LS-es1在0.05和0.01水平上差异显著。"

图3

水稻野生型(WT) TP309和突变体LS-es1的叶片组织细胞化学分析 (A) 野生型和突变体叶片的DAB染色(Bar=2 cm); (B) 野生型和突变体叶片的NBT染色(Bar=2 cm); (C), (E) 野生型TP309叶片Tunel检测(Bars=100 μm); (D), (F) 突变体LS-es1叶片Tunel检测(Bars=100 μm)"

图4

抽穗期水稻突变体LS-es1及其野生型(WT)叶片的过氧化氢酶(CAT) (A)、过氧化物酶(POD) (B)和超氧化物歧化酶(SOD) (C)活性以及丙二醛(MDA) (D)和过氧化氢(H2O2) (E)含量 *和**分别表示TP309与LS-es1在0.05和0.01水平上差异显著。"

表3

水稻野生型TP309和突变体LS-es1的叶绿素相对含量(SPAD值)和光合速率比较"

Net photosynthetic rate Stomatal conductance Intercellular CO2 concentration Transpiration rate SPAD
TP309 9.4±0.961 0.110±0.01 263±3 4.63±0.289 40.633±1.206
LS-es1 2.225±1.407** 0.0403±0.007** 312.5±10.606** 2.3±0.283** 27.65±2.333**

图5

水稻野生型(WT) TP309和突变体LS-es1叶片的透射电镜(TEM)观察 (A) TP309叶片细胞, 6000X; (B) TP309叶片细胞, 25000X; (C) TP309叶片细胞, 40000X; (D) LS-es1叶片细胞, 6000X; (E) LS-es1叶片细胞, 25000X; (F) LS-es1叶片细胞, 40000X。N: 细胞核; C: 叶绿体; Thy: 类囊体; S: 淀粉颗粒; Og: 嗜锇小体。Bars=1 μm"

图6

水稻野生型TP309和突变体LS-es1籽粒的扫描电镜(SEM)观察 (A), (B) TP309籽粒; (C), (D) LS-es1籽粒。(A), (C) Bars=1 mm; (B), (D) Bars=100 μm"

图7

外源激素处理对水稻野生型(WT) TP309和突变体LS-es1幼苗生长的抑制作用 (A) 水杨酸(SA)处理(上), 脱落酸(ABA)处理(中), 茉莉酸甲酯(MeJA)处理(下) (Bars=2 cm); (B) 激素处理后芽长的比较; (C) 激素处理后根长的比较。** 表示TP309与LS-es1在0.01水平上差异显著。"

表4

水稻早衰突变体LS-es1的遗传分析"

Hybrid combination (male/female) F1 pheno-
type
Namber of F2 normal phenotype Namber of F2 mutant phenotype Number of F2 population χ2 (3:1)
LS-es1/TN1 Normal 1381 471 1852 0.1842
LS-es1/ZF802 Normal 526 178 704 0.0303

图8

水稻突变体LS-es1的突变基因精细定位"

图9

水稻早衰突变体LS-es1候选基因及衰老相关基因的表达量 ** 表示TP309和LS-es1在0.01水平上差异显著。"

34 Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H, Ayoubi P (2006). Analysis of oxidative signaling induced by ozone in Arabidopsis thaliana. Plant Cell Environ 29, 1357-1371.
35 McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001). Effects of PSAG12- IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127, 505-516.
36 Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2010). Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59, 940-952.
37 Navabpour S, Morris K, Allen R, Harrison E, A-H- Mackerness S, Buchanan-Wollaston V (2003). Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54, 2285-2292.
38 Qiao YL, Jiang WZ, Lee J, Park BS, Choi MS, Piao RH, Woo MO, Roh JH, Han LZ, Paek NC, Seo HS, Koh HJ (2010). SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol 185, 258-274.
39 Rao YC, Yang YL, Xu J, Li XJ, Leng YJ, Dai LP, Huang LC, Shao GS, Ren DY, Hu J, Guo LB, Pan JW, Zeng DL (2015). EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice. Plant Physiol 169, 1225-1239.
40 Schippers JH, Schmidt R, Wagstaff C, Jing HC (2015). Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169, 914-930.
41 Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK (2013). Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38, 583-592.
42 Sun LT, Wang YH, Liu LL, Wang CM, Gan T, Zhang ZY, Wang YL, Wang D, Niu M, Long WH, Li XH, Zheng M, Jiang L, Wan JM (2017). Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep 7, 41846.
43 Tamiru M, Takagi H, Abe A, Yokota T, Kanzaki H, Okamoto H, Saitoh H, Takahashi H, Fujisaki K, Oikawa K, Uemura A, Natsume S, Jikumaru Y, Matsuura H, Umemura K, Terry MJ, Terauchi R (2016). A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. New Phytol 210, 1282-1297.
44 Tang YY, Li MR, Chen YP, Wu PZ, Wu GJ, Jiang HW (2011). Knockdown of Os PAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168, 1952-1959.
45 Undan JR, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R (2012). Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.). Genes Genet Syst 87, 169-179.
46 Wang S, Lei CL, Wang JL, Ma J, Tang S, Wang CL, Zhao KJ, Tian P, Zhang H, Qi CY, Cheng ZJ, Zhang X, Guo XP, Liu LL, Wu CY, Wan JM (2017). SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot 68, 899-913.
47 Wu HB, Wang B, Chen YL, Liu YG, Chen LT (2013). Characterization and fine mapping of the rice premature senescence mutant ospse1. Theor Appl Genet 126, 1897-1907.
48 Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145, 29-40.
49 Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M (2013). Nyc4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. Plant J 74, 652-662.
50 Yoshida S (2003). Molecular regulation of leaf senescence. Curr Opin Plant Biol 6, 79-84.
51 Zhou Y, Huang WF, Liu L, Chen TY, Zhou F, Lin YJ (2013). Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol 13, 132.
1 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 (2004). 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传 26, 529-531.
2 邓接楼, 王艾平, 何长水, 王爱斌, 徐芬芬 (2011). 硅肥对水稻生长发育及产量品质的影响. 广东农业科学 38(12), 58-61.
3 段俊, 梁承邺, 黄毓文 (1997). 杂交水稻开花结实期间叶片衰老. 植物生理学报 23, 139-144.
4 华春, 王仁雷 (2003). 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报 23, 406-409.
5 冷语佳 (2013). 水稻早衰基因ES10的遗传分析与基因定位. 硕士论文. 北京: 中国农业科学院. pp. 16-17.
6 刘翔 (2014). EMS诱变技术在植物育种中的研究进展. 激光生物学报 23, 197-201.
7 孙玉莹 (2013). 水稻叶片早衰基因PSL2的图位克隆及功能初步分析. 硕士论文. 北京: 中国农业科学院. pp. 17-65.
8 徐娜, 徐江民, 蒋玲欢, 饶玉春 (2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112.
9 张丽霞 (2000). 水稻叶片衰老相关基因的分离. 硕士论文. 福州: 福建农林大学. pp. 20-54.
10 Ansari MI, Lee RH, Chen SCG (2005). A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123, 1-8.
11 Chen HL, Li CR, Liu LP, Zhao JY, Cheng XZ, Jiang GH, Zhai WX (2016). The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. oryzae in rice. Sci Rep 6, 26411.
12 Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q, Chen SY, Zhang JS (2013a). An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark- induced leaf senescence in rice. Plant Physiol 163, 1752-1765.
13 Chen Y, Xu YY, Luo W, Li WX, Chen N, Zhang DJ, Chong K (2013b). The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes including leaf senescence in rice. Plant Physiol 163, 1673-1685.
14 Fanata WID, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO (2013). N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73, 966-979.
15 Gan S, Amasino RM (1997). Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113, 313-319.
16 Gan SS, Hörtensteiner S (2013). Frontiers in plant senescence research: from bench to bank. Plant Mol Biol 82, 503-504.
17 Hideg E, Kálai T, Kós PB, Asada K, Hideg K (2006). Singlet oxygen in plants—its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol 82, 1211-1218.
18 Huang LM, Sun QW, Qin FJ, Li C, Zhao Y, Zhou DX (2007). Down-regulation of a SILENT INFORMATION REGULATOR 2-related histone deacetylase gene, OsS- RT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144, 1508-1519.
19 Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL (2016). Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58, 12-28.
20 Jiang HW, Li MR, Liang NT, Yan HB, Wei YB, Xu XL, Liu J, Xu ZF, Chen F, Wu GJ (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J 52, 197-209.
21 Jiao BB, Wang JJ, Zhu XD, Zeng LJ, Li Q, He ZH (2012). A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant 5, 205-217.
22 Kariola T, Brader G, Li J, Palva ET (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282-294.
23 Kong ZS, Li MN, Yang WY, Xu WY, Xue YB (2006). A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141, 1376-1388.
24 Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362-1375.
25 Lee RH, Lin MC, Chen SC (2004). A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55, 281-295.
26 Lee RH, Wang CH, Huang LT, Chen SCG (2001). Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52, 1117-1121.
27 Leng YJ, Yang YL, Ren DY, Huang LC, Dai LP, Wang YQ, Chen L, Tu ZJ, Gao YH, Li XY, Zhu L, Hu J, Zhang GH, Gao ZY, Guo LB, Kong ZS, Lin YJ, Qian Q, Zeng DL (2017). A rice PECTATE LYASE-LIKE gene is required for plant growth and leaf senescence. Plant Physiol 174, 1151-1166.
28 Liang CZ, Wang YQ, Zhu YN, Tang JY, Hu B, Liu LC, Ou SJ, Wu HK, Sun XH, Chu JF, Chu CC (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA 111, 10013-10018.
29 Lim PO, Kim HJ, Nam HG (2007). Leaf senescence. Annu Rev Plant Biol 58, 115-136.
30 Lin AH, Wang YQ, Tang JY, Xue P, Li CL, Liu LC, Hu B, Yang FQ, Loake GJ, Chu CC (2012). Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158, 451-464.
31 Lin YH, Tan LB, Zhao L, Sun XY, Sun CQ (2016). RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol 58, 971-982.
32 Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method . Methods 25, 402-408.
33 Luan WJ, Shen A, Jin ZP, Song SS, Li ZL, Sha AH (2013). Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Sci China Life Sci 56, 1113-1123.
52 Zhou Y, Liu L, Huang WF, Yuan M, Zhou F, Li XH, Lin YJ (2014). Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One 9, e94210.
[1] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[2] 田怀东,李菁,田保华,牛鹏飞,李珍,岳忠孝,屈雅娟,姜建芳,王广元,岑慧慧,李南,闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[3] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[4] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[5] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[6] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[7] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[8] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[9] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[10] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[11] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[12] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
[13] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报, 2018, 53(6): 848-855.
[14] 鲁丹, 王丽, 宋凡, 陶菊红, 张大兵, 袁政. 水稻OsJMJ718基因可选择性多聚腺苷酸化序列的 克隆及生殖发育期表达模式[J]. 植物学报, 2018, 53(5): 594-602.
[15] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙翊, 李慧, 王亮生, 戴思兰. 一种快速有效分析烟草花冠中花青素苷的方法[J]. 植物学报, 2011, 46(2): 189 -196 .
[2] 谢安勇 宋艳茹. 生物技术生产生物可降解塑料PHB的前景[J]. 植物学报, 1994, 11(04): 21 -25 .
[3] 徐品三 栾雨时 刘纪文 新美芳二. 百合不定芽培养脱毒种球生产的研究[J]. 植物学报, 2003, 20(03): 313 -318 .
[4] 王台 童喆 赵玉锦. 光周期调节光敏感不育水稻叶片抗坏血酸过氧化物酶的活性[J]. 植物学报, 1993, 10(03): 36 -40 .
[5] 刘家熙. 木贼类孢子萌发方式的研究[J]. 植物学报, 1996, 13(专辑): 53 -54 .
[6] 包劲松 夏英武. 水稻淀粉合成的分子生物学研究进展[J]. 植物学报, 1999, 16(04): 352 -358 .
[7] 李懋学. 关于Centromere和Kinetochore的命名和中文译名问题[J]. 植物学报, 1990, 7(02): 34 -36 .
[8] 石凤杰 尹延海 王敬驹. 芦笋抗羟肺腑氨酸细胞变异体的筛选及其与耐NaCl和PEG关系的研究[J]. 植物学报, 1991, 8(增刊): 74 -77 .
[9] 王艳 蒋磊 李韶山. 拟南芥CHS 基因表达的实时荧光定量PCR 检测[J]. 植物学报, 2005, 22(05): 594 -598 .
[10] 利容千. 我国水稻雄性不育的细胞生物学研究概况与展望[J]. 植物学报, 1999, 16(增刊): 30 -34 .