植物学报 ›› 2018, Vol. 53 ›› Issue (4): 451-455.doi: 10.11983/CBB18056

• 热点评 • 上一篇    下一篇

植物防御素调控水稻镉积累的新机制

黄新元*(), 赵方杰   

  1. 南京农业大学资源与环境科学学院, 作物遗传与种质创新国家重点实验室, 南京 210095
  • 收稿日期:2018-03-08 接受日期:2018-03-30 出版日期:2018-07-01 发布日期:2018-09-11
  • 通讯作者: 黄新元 E-mail:xinyuan.huang@njau.edu.cn
  • 作者简介:† 共同第一作者。

A Defensin-like Protein Regulates Cadmium Accumulation in Rice

Huang Xinyuan*(), Zhao Fangjie   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2018-03-08 Accepted:2018-03-30 Online:2018-07-01 Published:2018-09-11
  • Contact: Huang Xinyuan E-mail:xinyuan.huang@njau.edu.cn
  • About author:† These authors contributed equally to this paper

摘要:

镉是我国农产品的主要重金属污染物之一。随着我国土壤重金属污染问题日益突出, 包括稻米在内的农产品重金属超标时常发生。如何防控重金属在作物可食部位的积累, 在保证农产品安全的同时将农田重金属进行移除修复, 已成为我国农业生产急需解决的问题。最近, 中科院上海生命科学院植物生理生态所龚继明研究组和中国水稻所钱前研究组克隆到1个特异调控镉在水稻(Oryza sativa)叶片中积累的主效QTL基因CAL1CAL1编码1个植物防御素类似蛋白, 通过与镉进行螯合, 将镉从维管束木质部薄壁细胞中分泌出来, 进入木质部参与长距离转运, 从而定向调控镉在水稻叶片等营养器官的积累而不影响籽粒镉的积累。该研究加深了人们对重金属镉在植物体内的转运和再分配机理的认识, 同时也为培育秸秆镉高积累而籽粒镉含量达标的“修复型”水稻品种提供有价值的新基因。研究成果具有重要的理论意义和应用价值。

关键词: 水稻, 镉, 植物修复, 植物防御素

Abstract:

Cadmium (Cd) is a highly toxic heavy metal that threatens human health. Rice is one of food crops that can accumulate Cd in the grain to levels that are unsafe for human consumption. With increasing contamination of heavy metals in paddy soils in China, considerable proportions of rice grain produced in some areas of southern China exceed the 0.2 mg·kg-1 Cd limit of the Chinese food standard, which causes widespread public concern. Molecular breeding of rice varieties that accumulate Cd in straw for removing Cd from paddy soil while producing safe grain is one of the strategies for phytoremediation of contaminated soils. Recently, Luo et al. identified a quantitative trait locus CAL1 in rice that specifically regulates the accumulation of Cd in leaves. CAL1 encodes a defensin-like protein that can chelate Cd in the cytosol and facilitates Cd secretion from xylem parenchyma cells into xylem vessels for long-distance transport. The chelation of Cd to CAL1 appears to prevent Cd from being loaded into the phloem for transport to rice grain. Thus, CAL1 does not affect the accumulation of Cd in rice grain. These findings shed light on understanding the molecular mechanism of Cd translocation and allocation in rice and provide a molecular tool to breed rice varieties that may be used to remove Cd from the soil without affecting grain Cd concentration.

Key words: rice, cadmium, phytoremediation, defensin protein

图1

水稻根部吸收和转运镉的示意图镉离子在水稻根部通过OsNRAMP5吸收进入外皮层, 随后部分镉被OsHMA3转运到液泡中进行区隔化。OsNRAMP5同时负责将镉离子从皮层细胞转运到内皮层细胞。位于木质部薄壁细胞的CAL1蛋白与镉进行螯合后被分泌到胞外, 进入木质部导管向地上部进行长距离运输。CAL1蛋白也在外皮层细胞中表达, 可能也与镉进行螯合之后分泌到皮层细胞中。然而, 介导CAL1-Cd螯合物跨膜转运是通过转运蛋白还是囊泡运输尚不清楚。"

1 环境保护部和国土资源部 (2014). 全国土壤污染状况调查公报. .
2 Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017). Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in miti- gation of cadmium and arsenic stresses. Plant Mol Biol 94, 167-183.
3 Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013). Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.Environ Monit Assess 185, 9843-9856.
4 Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012). Ion-beam irradiation, gene identification, and marker- assisted breeding in the development of low-cadmium rice.Proc Natl Acad Sci USA 109, 19166-19171.
5 Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport.Sci Rep 2, 286.
6 Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018). A defensin-like protein drives cadmium efflux and allocation in rice.Nat Commun 9, 645.
7 Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Tak- ahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.New Phytol 189, 190-199.
8 Sasaki A, Yamaji N, Yokosho K, Ma JF (2012). Nramp5 is a major transporter responsible for manganese and cad- mium uptake in rice.Plant Cell 24, 2155-2167.
9 Song Y, Wang Y, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017). Dietary cadmium expo- sure assessment among the Chinese population.PLoS One 12, e0177978.
10 Tang L, Mao BG, Li YK, Lv QM, Zhang LP, Chen CY, He HJ, Wang WP, Zeng XF, Shao Y, Pan YL, Hu YY, Peng Y, Fu XQ, Li HQ, Xia ST, Zhao BR (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield.Sci Rep 7, 14438.
11 Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010). Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA 107, 16500-16505.
12 Yan JL, Wang PT, Wang P, Yang M, Lian XM, Tang Z, Huang CF, Salt DE, Zhao FJ (2016). A loss-of-function allele of OsHMA3 associated with high cadmium accu- mulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39, 1941-1954.
13 Yang M, Zhang YY, Zhang LJ, Hu JT, Zhang X, Lu K, Dong HX, Wang DJ, Zhao FJ, Huang CF, Lian XM (2014). OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.J Exp Bot 65, 4849-4861.
14 Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015). Soil contamination in China: current status and mitigation stra- tegies.Environ Sci Technol 49, 750-759.
15 Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China.En- viron Pollut 219, 99-106.
[1] 晁代印. “绿色革命”新进展:赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1): 0-0.
[2] 张彤,郭亚璐,陈悦,马金姣,兰金苹,燕高伟,刘玉晴,徐珊,李莉云,刘国振,窦世娟. 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能[J]. 植物学报, 2019, 54(6): 711-722.
[3] 田怀东, 李菁, 田保华, 牛鹏飞, 李珍, 岳忠孝, 屈雅娟, 姜建芳, 王广元, 岑慧慧, 李南, 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 625-633.
[4] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[5] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[6] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[7] 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508.
[8] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性[J]. 植物学报, 2019, 54(4): 509-514.
[9] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 464-473.
[10] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[11] 栗露露, 殷文超, 牛梅, 孟文静, 张晓星, 童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[12] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[13] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[14] 朱丽, 钱前. 虾青素功能米: 生物强化新思路, 优质米培育新资源[J]. 植物学报, 2019, 54(1): 4-8.
[15] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物的受精作用 第四讲 受精的障碍——不亲和性[J]. 植物学报, 1984, 2(23): 93 -99 .
[2] 蒋高明. 退化生态系统的恢复与管理——兼论自然保护区在其中发挥的作用[J]. 植物学报, 2003, 20(03): 373 -382 .
[3] 罗立新 崔克明 杨海东 李正理 李举怀. 杜仲形成层恢复活动和过氧化物酶同工酶酶谱的变化[J]. 植物学报, 1994, 11(专辑): 65 .
[4] 刘向东 徐是雄 卢永根. 水稻受精前胚囊壁的形式与发育观察[J]. 植物学报, 1996, 13(专辑): 103 .
[5] 张孝英 杨世杰. 胞间连丝与大分子物质的胞间转移[J]. 植物学报, 1999, 16(02): 150 -156 .
[6] 陈璋. 拟南芥:植物分子生物学研究的模式物种[J]. 植物学报, 1994, 11(01): 6 -11 .
[7] 蔡雪. 花粉粒和花粉管中的微管骨架[J]. 植物学报, 1996, 13(专辑): 13 -16 .
[8] 雷晓勇 黄蕾 田梅生 胡小松 戴尧仁. 苹果果肉中抗氰氧化酶(AOX)的分离鉴定[J]. 植物学报, 2002, 19(06): 739 -742 .
[9] 姚春鹏 李娜. 植物激素脱落酸受体的研究进展[J]. 植物学报, 2006, 23(6): 718 -724 .
[10] 王丽, 王芹芹, 王幼群. 蚕豆叶片小叶脉不同发育时期ATP酶和酸性磷酸酶的细胞化学超微结构定位[J]. 植物学报, 2014, 49(1): 78 -86 .