Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (4): 451-455.DOI: 10.11983/CBB18056 cstr: 32102.14.CBB18056
• COMMENTARIES • Previous Articles Next Articles
Huang Xinyuan*(), Zhao Fangjie
Received:
2018-03-08
Accepted:
2018-03-30
Online:
2018-07-01
Published:
2018-09-11
Contact:
Huang Xinyuan
About author:
These authors contributed equally to this paper
Huang Xinyuan, Zhao Fangjie. A Defensin-like Protein Regulates Cadmium Accumulation in Rice[J]. Chinese Bulletin of Botany, 2018, 53(4): 451-455.
Figure 1 Schematic diagram of the uptake and transport of Cd in rice rootsThe uptake of Cd into rice roots is mediated by OsNRAMP5, which is also responsible for the transport of Cd from cortex cells into endodermis. Part of Cd is then sequestered into vacuoles by OsHMA3. In xylem parenchyma cells, Cd is chelated with CAL1 in the cytosol and then is secreted into the xylem vessels for long-distance transport to shoots. CAL1 is also expressed in exodermis, where CAL1 is also able to chelate Cd and potentially facilitates the Cd secretion from exodermis into cortex cells. However, it is still not clear whether transporters or vesicular trafficking pathways are responsible for translocating the CAL1-Cd complex across the plasma membrane.
1 | 环境保护部和国土资源部 (2014). 全国土壤污染状况调查公报. . |
2 | Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017). Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in miti- gation of cadmium and arsenic stresses. Plant Mol Biol 94, 167-183. |
3 | Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013). Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.Environ Monit Assess 185, 9843-9856. |
4 | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012). Ion-beam irradiation, gene identification, and marker- assisted breeding in the development of low-cadmium rice.Proc Natl Acad Sci USA 109, 19166-19171. |
5 | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport.Sci Rep 2, 286. |
6 | Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018). A defensin-like protein drives cadmium efflux and allocation in rice.Nat Commun 9, 645. |
7 | Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Tak- ahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.New Phytol 189, 190-199. |
8 | Sasaki A, Yamaji N, Yokosho K, Ma JF (2012). Nramp5 is a major transporter responsible for manganese and cad- mium uptake in rice.Plant Cell 24, 2155-2167. |
9 | Song Y, Wang Y, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017). Dietary cadmium expo- sure assessment among the Chinese population.PLoS One 12, e0177978. |
10 | Tang L, Mao BG, Li YK, Lv QM, Zhang LP, Chen CY, He HJ, Wang WP, Zeng XF, Shao Y, Pan YL, Hu YY, Peng Y, Fu XQ, Li HQ, Xia ST, Zhao BR (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield.Sci Rep 7, 14438. |
11 | Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010). Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA 107, 16500-16505. |
12 | Yan JL, Wang PT, Wang P, Yang M, Lian XM, Tang Z, Huang CF, Salt DE, Zhao FJ (2016). A loss-of-function allele of OsHMA3 associated with high cadmium accu- mulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39, 1941-1954. |
13 | Yang M, Zhang YY, Zhang LJ, Hu JT, Zhang X, Lu K, Dong HX, Wang DJ, Zhao FJ, Huang CF, Lian XM (2014). OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.J Exp Bot 65, 4849-4861. |
14 | Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015). Soil contamination in China: current status and mitigation stra- tegies.Environ Sci Technol 49, 750-759. |
15 | Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China.En- viron Pollut 219, 99-106. |
[1] |
Juan Cui, Xiaoyu Yu, Yuejiao Yu, Chengwei Liang, Jian Sun, Wenfu Chen.
Analysis of Texture Factors and Genetic Basis Influencing the Differences in Eating Quality between Northeast China and Japanese Japonica Rice [J]. Chinese Bulletin of Botany, 2025, 60(4): 1-0. |
[2] | Zhao Ling, Guan Ju, Liang Wenhua, Zhang Yong, Lu Kai, Zhao Chunfang, Li Yusheng, Zhang Yadong. Mapping of QTLs for Heat Tolerance at the Seedling Stage in Rice Based on a High-density Bin Map [J]. Chinese Bulletin of Botany, 2025, 60(3): 342-353. |
[3] | Xinyu Li, Yue Gu, Feifei Xu, Jinsong Bao. Research Progress on Post-translational Modifications of Starch Biosynthesis-related Proteins in Rice Endosperm [J]. Chinese Bulletin of Botany, 2025, 60(2): 256-270. |
[4] | Jianguo Li, Yi Zhang, Wenjun Zhang. Iron Plaque Formation and Its Effects on Phosphorus Absorption in Rice Roots [J]. Chinese Bulletin of Botany, 2025, 60(1): 132-143. |
[5] | Ruifeng Yao, Daoxin Xie. Activation and Termination of Strigolactone Signal Perception in Rice [J]. Chinese Bulletin of Botany, 2024, 59(6): 873-877. |
[6] | Jinjin Lian, Luyao Tang, Yinuo Zhang, Jiaxing Zheng, Chaoyu Zhu, Yuhan Ye, Yuexing Wang, Wennan Shang, Zhenghao Fu, Xinxuan Xu, Richeng Wu, Mei Lu, Changchun Wang, Yuchun Rao. Genetic Locus Mining and Candidate Gene Analysis of Antioxidant Traits in Rice [J]. Chinese Bulletin of Botany, 2024, 59(5): 738-751. |
[7] | Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress [J]. Chinese Bulletin of Botany, 2024, 59(4): 574-584. |
[8] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
[9] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[10] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[11] | Yanli Fang, Chuanyu Tian, Ruyi Su, Yapei Liu, Chunlian Wang, Xifeng Chen, Wei Guo, Zhiyuan Ji. Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak [J]. Chinese Bulletin of Botany, 2024, 59(1): 1-9. |
[12] | Dai Ruohui, Qian Xinyu, Sun Jinglei, Lu Tao, Jia Qiwei, Lu Tianqi, Lu Mei, Rao Yuchun. Research Progress on the Mechanisms of Leaf Color Regulation and Related Genes in Rice [J]. Chinese Bulletin of Botany, 2023, 58(5): 799-812. |
[13] | Tian Chuanyu, Fang Yanli, Shen Qing, Wang Hongjie, Chen Xifeng, Guo Wei, Zhao Kaijun, Wang Chunlian, Ji Zhiyuan. Genotypic Diversity and Pathogenisity of Xanthomonas oryzae pv. oryzae Isolated from Southern China in 2019-2021 [J]. Chinese Bulletin of Botany, 2023, 58(5): 743-749. |
[14] | Cai Shuyu, Liu Jianxin, Wang Guofu, Wu Liyuan, Song Jiangping. Regulatory Mechanism of Melatonin on Tomato Seed Germination Under Cd2+ Stress [J]. Chinese Bulletin of Botany, 2023, 58(5): 720-732. |
[15] | Shang Sun, Yingying Hu, Yangshuo Han, Chao Xue, Zhiyun Gong. Double-stranded Labelled Oligo-FISH in Rice Chromosomes [J]. Chinese Bulletin of Botany, 2023, 58(3): 433-439. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||