Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (5): 720-732.DOI: 10.11983/CBB22202
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Cai Shuyu(), Liu Jianxin, Wang Guofu, Wu Liyuan, Song Jiangping
Received:
2022-08-26
Accepted:
2022-12-01
Online:
2023-09-01
Published:
2023-09-21
Contact:
*E-mail: csyyoukeer@126.com
Cai Shuyu, Liu Jianxin, Wang Guofu, Wu Liyuan, Song Jiangping. Regulatory Mechanism of Melatonin on Tomato Seed Germination Under Cd2+ Stress[J]. Chinese Bulletin of Botany, 2023, 58(5): 720-732.
Figure1 Effect of cadmium concentrations on seed germination and seedling growth of tomato (A) Germination phenotypes of tomato seeds 3 days after germination(bars=1 cm); (B) Germination rate of tomato seeds 3 days after germination; (C) Phenotypes of tomato seedlings 5 days after germination (bar=1 cm); (D) Seedling length of tomato 5 days after germination. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 2 Effects of melatonin (MT) on tomato seed germination under Cd2+ stress (A) Germination phenotypes of seeds 3 days after germination(bars=1 cm); (B) Germination rate; (C) Phenotypes of tomato seedlings 5 days after germination (bar=1 cm); (D) Seedling length. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 3 Effects of melatonin (MT) treatment on endogenous melatonin metabolism during tomato seed germination under Cd2+ stress (A) MT content; (B) Tryptophan decarboxylase (TDC) activity; (C) Tryptamine-5-hydroxylase (T5H) activity; (D) 5-serotonin-N-acetyltransferae (SNAT) activity; (E) N-acetyl-5-serotonin-methyltransferase (ASMT) activity; (F) Caffeicacid-O-me- thyltransferase (COMT) activity. Different lowercase letters and * indicate significant differences among different treatments (P<0.05). Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
Treatment | Cd2+ content in underground parts (mg·kg-1 DW) | Cd2+ content in above-ground parts (mg·kg-1 DW) | ||
---|---|---|---|---|
3 d | 5 d | 3 d | 5d | |
Control | 0.074±0.004 c | 0.098±0.012 c | 0.034±0.005 b | 0.047±0.003 c |
Cd2+ | 0.138±0.011 a | 0.176±0.009 a | 0.041±0.006 a | 0.068±0.004 a |
Cd2+/MT | 0.097±0.007 b | 0.126±0.007 b | 0.042±0.005 a | 0.054±0.007 b |
Table 1 Cd2+ accumulation of tomato seeds during germination under Cd2+ stress
Treatment | Cd2+ content in underground parts (mg·kg-1 DW) | Cd2+ content in above-ground parts (mg·kg-1 DW) | ||
---|---|---|---|---|
3 d | 5 d | 3 d | 5d | |
Control | 0.074±0.004 c | 0.098±0.012 c | 0.034±0.005 b | 0.047±0.003 c |
Cd2+ | 0.138±0.011 a | 0.176±0.009 a | 0.041±0.006 a | 0.068±0.004 a |
Cd2+/MT | 0.097±0.007 b | 0.126±0.007 b | 0.042±0.005 a | 0.054±0.007 b |
Figure 4 Effects of melatonin (MT) on the gene expression of Cd2+ uptake, transport and chelating metabolic enzymes in tomato seed germination under Cd2+ stress Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
Treatment | H2O2 (μmol·g-1 FW) | O2-. (μmol·g-1 FW) | MDA (μmol·g-1 FW) |
---|---|---|---|
Control | 13.24±0.714 c | 2.43±0.154 b | 6.26±0.514 c |
Cd2+ | 25.37±1.325 a | 4.79±0.328 a | 10.13±0.758 a |
Cd2+/MT | 20.13±1.628 b | 4.13±0.376 a | 8.24±0.811 b |
Table 2 Effects of melatonin (MT) on the accumulation of H2O2, O2-. and malonaldehyde (MDA) in tomato seed germination under Cd2+ stress
Treatment | H2O2 (μmol·g-1 FW) | O2-. (μmol·g-1 FW) | MDA (μmol·g-1 FW) |
---|---|---|---|
Control | 13.24±0.714 c | 2.43±0.154 b | 6.26±0.514 c |
Cd2+ | 25.37±1.325 a | 4.79±0.328 a | 10.13±0.758 a |
Cd2+/MT | 20.13±1.628 b | 4.13±0.376 a | 8.24±0.811 b |
Treatment | SOD (U·g-1 FW) | POD (U·g-1 FW) | CAT (U·g-1 FW) | APX (U·g-1 FW) | ALDH (U·g-1 FW) |
---|---|---|---|---|---|
Control | 2.13±0.175 b | 0.105±0.078 b | 3.57±0.295 c | 0.274±0.037 c | 1.37±0.116 c |
Cd2+ | 2.74±0.213 a | 0.157±0.024 a | 4.19±0.182 b | 0.357±0.042 b | 2.17±0.133 b |
Cd2+/MT | 2.63±0.146 a | 0.142±0.021 a | 5.12±0.411 a | 0.408±0.026 a | 2.58±0.179 a |
Table 3 Effects of melatonin (MT) on antioxidant enzyme activities during tomato seed germination under Cd2+ stress
Treatment | SOD (U·g-1 FW) | POD (U·g-1 FW) | CAT (U·g-1 FW) | APX (U·g-1 FW) | ALDH (U·g-1 FW) |
---|---|---|---|---|---|
Control | 2.13±0.175 b | 0.105±0.078 b | 3.57±0.295 c | 0.274±0.037 c | 1.37±0.116 c |
Cd2+ | 2.74±0.213 a | 0.157±0.024 a | 4.19±0.182 b | 0.357±0.042 b | 2.17±0.133 b |
Cd2+/MT | 2.63±0.146 a | 0.142±0.021 a | 5.12±0.411 a | 0.408±0.026 a | 2.58±0.179 a |
Figure 5 Effects of melatonin (MT) on the expression of antioxidant enzyme genes in tomato seed germination under Cd2+ stress Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
Figure 6 Effects of melatonin (MT) on gibberellin acid (GA) metabolism during tomato seed germination under Cd2+stress (A) GA content; (B) GA-3-oxidase (GA3ox) activity; (C) GA-20-oxidase (GA20ox) activity; (D) GA-2-oxidase (GA2ox) activity. Different lowercase letters and * indicate significant differences at 0.05 level. Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
Figure 7 Effects of melatonin (MT) on abscisic acid (ABA) metabolism during tomato seed germination under Cd2+stress (A) Abscisic acid content; (B) 9-cis-epoxycarotenoid dioxygenase (NCED) activity; (C) Zeaxanthin epoxidase (ZEP) activity; (D) ABA-aldehyde oxidase (AAO) activity; (E) ABA-8-hydroxylase (ABA8ox) activity. Different lowercase letters and * indicate significant differences at 0.05 level. Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
Figure 8 Effects of melatonin (MT) on gene expression of gibberellin (GA) and abscisic acid (ABA) metabolism Control, Cd2+, and Cd2+/MT are the same as shown in Figure 2.
[1] | 安婷婷, 黄帝, 王浩, 张一, 陈应龙 (2021). 植物响应镉胁迫的生理生化机制研究进展. 植物学报 56, 347-362. |
[2] | 陈雅丽, 翁莉萍, 马杰, 武晓娟, 李永涛 (2019). 近十年中国土壤重金属污染源解析研究进展. 农业环境科学学报 38, 2219-2238. |
[3] |
李冬, 王艳芳, 王悦华, 温烜琳, 蔡慧英, 郑晓蕾, 陈彤彤, 刘领 (2019). 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响. 核农学报 33, 2271-2279.
DOI |
[4] |
刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔 (2022). 褪黑素参与植物抗逆功能研究进展. 植物学报 57, 111-126.
DOI |
[5] | 刘仕翔, 黄益宗, 罗泽娇, 黄永春, 保琼莉, 王培培, 袁彪, 李文华 (2016). 外源褪黑素处理对镉胁迫下水稻种子萌发的影响. 农业环境科学学报 35, 1034-1041. |
[6] | 刘茵, 梁峰 (2021). 不同重金属离子影响下番茄种子的萌发及幼苗生长研究. 安徽农学通报 27(17), 99-101. |
[7] | 孙淑珍 (2020). 不同小麦品种耐铬(Cr6+)性差异及褪黑素缓解效应. 硕士论文. 南京: 南京农业大学. pp. 22-37. |
[8] |
王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳 (2022). 水稻镉积累特性的生理和分子机制研究概述. 植物学报 57, 236-249.
DOI |
[9] | 张星雨, 叶志彪, 张余洋 (2021). 植物响应镉胁迫的生理与分子机制研究进展. 植物生理学报 57, 1437-1450. |
[10] | 周明, 李常保 (2022). 我国番茄种业发展现状及展望. 蔬菜 (5), 6-10. |
[11] |
Arnao MB, Hernández-Ruiz J (2015). Functions of melatonin in plants: a review. J Pineal Res 59, 133-150.
DOI PMID |
[12] |
Back K (2021). Melatonin metabolism, signaling and possible roles in plants. Plant J 105, 376-391.
DOI URL |
[13] |
Chen L, Lu B, Liu LT, Duan WJ, Jiang D, Li J, Zhang K, Sun HC, Zhang YJ, Li CD, Bai ZY (2021). Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 162, 506-516.
DOI URL |
[14] |
DalCorso G, Farinati S, Furini A (2010). Regulatory networks of cadmium stress in plants. Plant Signal Behav 5, 663-667.
DOI PMID |
[15] | Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83, 33-46. |
[16] |
Gu Q, Chen ZP, Yu XL, Cui WT, Pan JC, Zhao G, Xu S, Wang R, Shen WB (2017). Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA- mediated redox homeostasis. Plant Sci 261, 28-37.
DOI URL |
[17] |
Hardeland R (2016). Melatonin in plants—diversity of levels and multiplicity of functions. Front Plant Sci 7, 198.
DOI PMID |
[18] | Hasan MK, Ahammed GJ, Yin LL, Shi K, Xia XJ, Zhou YH, Yu JQ, Zhou J (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6, 601. |
[19] |
He JL, Zhuang XL, Zhou JT, Sun LY, Wan HX, Li HF, Lyu DG (2020). Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks. Tree Physiol 40, 746-761.
DOI PMID |
[20] |
Huang XY, Deng FL, Yamaji N, Pinson SRM, Fujii-Kashino M, Danku J, Douglas A, Guerinot ML, Salt DE, Ma JF (2016). A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun 7, 12138.
DOI |
[21] |
Khan N, You FM, Datla R, Ravichandran S, Jia BS, Cloutier S (2020). Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics 21, 722.
DOI |
[22] |
Li C, Tan DX, Liang D, Chang C, Jia DF, Ma FW (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66, 669-680.
DOI URL |
[23] |
Li H, Guo YL, Lan ZX, Zhang ZX, Ahammed GJ, Chang JJ, Zhang Y, Wei CH, Zhang X (2021). Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Sci 303, 110761.
DOI URL |
[24] |
Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016a). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61, 291-302.
DOI URL |
[25] |
Li XN, Tan DX, Jiang D, Liu FL (2016b). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J Pineal Res 61, 328-339.
DOI URL |
[26] |
Liang CZ, Zheng GY, Li WZ, Wang YQ, Hu B, Wang HR, Wu HK, Qian YW, Zhu XG, Tan DX, Chen SY, Chu CC (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59, 91-101.
DOI PMID |
[27] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct methods. Methods 25, 402-408.
DOI URL |
[28] | Lv Y, Pan JJ, Wang HP, Reiter RJ, Li X, Mou ZM, Zhang JM, Yao ZP, Zhao DK, Yu DQ (2021). Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis. J Pineal Res 70, e12736. |
[29] |
Moustafa-Farag M, Elkelish A, Dafea M, Khan M, Arnao MB, Abdelhamid MT, Abu El-Ezz A, Almoneafy A, Mahmoud A, Awad M, Li LF, Wang YH, Hasanuzzaman M, Ai SY (2020). Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25, 5359.
DOI URL |
[30] |
Ni J, Wang QJ, Shah FA, Liu WB, Wang DD, Huang SW, Fu SL, Wu LF (2018). Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23, 799.
DOI URL |
[31] |
Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74, 3863-3881.
DOI |
[32] |
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules 25, 540.
DOI URL |
[33] |
Sheteiwy MS, Shao HB, Qi WC, Hamoud YA, Shaghaleh H, Khan NU, Yang RP, Tang BP (2019). GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20, 5709.
DOI URL |
[34] |
Tousi S, Zoufan P, Ghahfarrokhie AR (2020). Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. Ecotox Environ Saf 206, 111403.
DOI URL |
[35] | Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, Shan DQ, Liu X, Kong J (2017). Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63, e12429. |
[36] |
Wang L, Zhao Y, Reiter RJ, He CJ, Liu GS, Lei Q, Zuo BX, Zheng XD, Li QT, Kong J (2014). Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56, 134-142.
DOI PMID |
[37] |
Wang YP, Reiter RJ, Chan Z (2018). Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69, 963-974.
DOI PMID |
[38] |
Wang YS, Yang ZM (2005). Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46, 1915-1923.
DOI URL |
[39] |
Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66, 695-707.
DOI PMID |
[40] |
Yadav SK (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76, 167-179.
DOI URL |
[41] |
Zhang HJ, Qiu YH, Ji YH, Wu X, Xu XL, Wu P (2023). Melatonin promotes seed germination via regulation of ABA signaling under low temperature stress in cucumber. J Plant Growth Regul 42, 2232-2245.
DOI |
[42] | Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren SX, Guo YD (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57, 269-279. |
[43] |
Zhang Y, Zhou XJ, Dong YT, Zhang F, He QL, Chen JH, Zhu SJ, Zhao TL (2021). Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Ind Crop Prod 169, 113671.
DOI URL |
[1] | Wen-bo Li Long Sun Hu Lou Cheng Yu Yu Han Tong-xin HU. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(6): 0-0. |
[2] | . Difference of seed germination characteristics and dormancy release method of Schoenoplectiella mucronata [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[3] | Laipeng Zhao, Baike Wang, Tao Yang, Ning Li, Haitao Yang, Juan Wang, Huizhuan Yan. Investigation of SlHVA22l gene regulating drought tolerance in tomato [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[4] | Ren-Yu Liao, Jia-Wei Wang. From Wound to Rebirth: How does REF1 Peptide Activate Intrinsic Regenerative Potential of Plants? [J]. Chinese Bulletin of Botany, 2024, 59(3): 347-350. |
[5] | Jinyu Du, Zhen Sun, Yanlong Su, Heping Wang, Yaling Liu, Zhenying Wu, Feng He, Yan Zhao, Chunxiang Fu. Identification and Functional Analysis of an Agropyron mongolicum Caffeic Acid 3-O-methyltransferase Gene AmCOMT1 [J]. Chinese Bulletin of Botany, 2024, 59(3): 383-396. |
[6] | Xiaobo Zhu, Zhang Dong, Mengjin Zhu, Jin Hu, Cheng Lin, Min Chen, Yajing Guan. Indispensable Material for Germination: Long-lived mRNAs of Plant Seed [J]. Chinese Bulletin of Botany, 2024, 59(3): 355-372. |
[7] | Qi Zhang, Wenjing Zhang, Xiankai Yuan, Ming Li, Qiang Zhao, Yanli Du, Jidao Du. The Regulatory Mechanism of Melatonin on Nucleic Acid Repairing of Common Bean (Phaseolus vulgaris) at the Sprout Stage Under Salt Stress [J]. Chinese Bulletin of Botany, 2023, 58(1): 108-121. |
[8] | Jinxiang Ai, Jiayi Song, Zhenan Yan, Zhichao Wang, Wenqian Chen, Yuhuan Wu, Yanyan Wang, Leilei Pan, Yutao Xu, Peng Liu. Effects of Exogenous Melatonin on Physiological Response and DNA Damage of Ardisia mamillata and A. crenata Under Lead Stress [J]. Chinese Bulletin of Botany, 2022, 57(2): 171-181. |
[9] | Haixia Xu, Jing He, Hang Yi, Li Wang. Sex Specific Response Mechanism of Transcriptome in Both Male and Female Marchantia polymorpha Under Cadmium Stress [J]. Chinese Bulletin of Botany, 2022, 57(2): 182-196. |
[10] | Deshuai Liu, Lei Yao, Weirong Xu, Mei Feng, Wenkong Yao. Research Progress of Melatonin in Plant Stress Resistance [J]. Chinese Bulletin of Botany, 2022, 57(1): 111-126. |
[11] | Xiaomin Wang, Honglei Li, Lin Wang, Pengze Zhou, Shengyi Bai, Guohua Li, Fushun Zheng, Xiaorong Tao, Guoxin Cheng, Yanming Gao, Jianshe Li. Molecular Identification of Tomato Spotted Wilt Virus on Tomato in Yinchuan [J]. Chinese Bulletin of Botany, 2021, 56(6): 715-721. |
[12] | LI Shao-Yang, MA Hong-Yuan, ZHAO Dan-Dan, MA Meng-Yao, QI Wen-Wen. Research progress on the effects of fire-related cues on seed germination [J]. Chin J Plant Ecol, 2021, 45(11): 1177-1190. |
[13] | Nan Zhang,Ziguang Liu,Shichen Sun,Shengyi Liu,Jianhui Lin,Yifang Peng,Xiaoxu Zhang,He Yang,Xi Cen,Juan Wu. Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis [J]. Chinese Bulletin of Botany, 2020, 55(4): 421-429. |
[14] | Dongdong Cao,Shanyu Chen,Yebo Qin,Huaping Wu,Guanhai Ruan,Yutao Huang. Regulatory Mechanism of Salicylic Acid on Seed Germination Under Salt Stress in Kale [J]. Chinese Bulletin of Botany, 2020, 55(1): 49-61. |
[15] | Aysajan ABDUSALAM, Dilinaer ABULA, ZHANG Kai, Maireyemugu TUERXUN, Kadir ABDULRASHID, LI Ling. Fruit set and seed germination traits of Zygophyllum kaschgaricum [J]. Chin J Plant Ecol, 2019, 43(5): 437-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||