Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (5): 752-762.DOI: 10.11983/CBB24008 cstr: 32102.14.CBB24008
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Yan Luo, Qiyuan Liu, Yuanbing Lü, Yue Wu, Yaoyu Tian, Tian An, Zhenhua Li*()
Received:
2024-01-15
Accepted:
2024-07-14
Online:
2024-09-10
Published:
2024-08-19
Contact:
Zhenhua Li
CLC Number:
Yan Luo, Qiyuan Liu, Yuanbing Lü, Yue Wu, Yaoyu Tian, Tian An, Zhenhua Li. Photothermal Sensitivity of Phytochrome Mutants During Seed Germination in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2024, 59(5): 752-762.
Figure 1 Effects of genotype, light, temperature and their interactions on seed germination in Arabidopsis thaliana NS indicates no significant difference; *, *** and **** indicate significant differences at 0.05, 0.001, and 0.0001 level, respectively. Different lowercase letters indicate significant differences among the treatments (P<0.05).
Source | I | J | Mean difference (I-J) | P-value | Standard deviation |
---|---|---|---|---|---|
Genotype | Col-0 | phyA | -4.12 | 0.069 | 30.15 |
phyB | -2.87 | 0.104 | 24.32 | ||
phyC | -16.98 | 0.000*** | 30.61 | ||
phyD | -10.42 | 0.000*** | 28.95 | ||
phyE | -9.28 | 0.000*** | 31.18 | ||
phyA | phyB | 1.25 | 0.682 | 27.13 | |
phyC | -12.86 | 0.000*** | 32.44 | ||
phyD | -6.3 | 0.01** | 31.10 | ||
phyE | -5.16 | 0.03* | 33.22 | ||
phyB | phyC | -14.11 | 0.000*** | 27.29 | |
phyD | -7.55 | 0.000*** | 25.60 | ||
phyE | -6.41 | 0.046* | 28.13 | ||
phyC | phyD | 6.56 | 0.000*** | 30.46 | |
phyE | 7.69 | 0.000*** | 32.73 | ||
phyD | phyE | 1.14 | 0.060 | 31.67 | |
Temperature | 15°C | 25°C | 8.75 | 0.000*** | 29.72 |
35°C | 55.76 | 0.000*** | 29.99 | ||
25°C | 35°C | 47.01 | 0.000*** | 29.21 | |
Light | Darkness | White light | -8.89 | 0.000*** | 29.79 |
Red light | -12.55 | 0.000*** | 29.99 | ||
Far-red light | 16.13 | 0.230 | 30.11 | ||
White light | Red light | -3.66 | 0.272 | 30.18 | |
Far-red light | 25.02 | 0.034* | 29.67 | ||
Red light | Far-red light | 28.68 | 0.000*** | 28.79 |
Table 1 Comparisons of mean difference within the genotype, light, and temperature treatment
Source | I | J | Mean difference (I-J) | P-value | Standard deviation |
---|---|---|---|---|---|
Genotype | Col-0 | phyA | -4.12 | 0.069 | 30.15 |
phyB | -2.87 | 0.104 | 24.32 | ||
phyC | -16.98 | 0.000*** | 30.61 | ||
phyD | -10.42 | 0.000*** | 28.95 | ||
phyE | -9.28 | 0.000*** | 31.18 | ||
phyA | phyB | 1.25 | 0.682 | 27.13 | |
phyC | -12.86 | 0.000*** | 32.44 | ||
phyD | -6.3 | 0.01** | 31.10 | ||
phyE | -5.16 | 0.03* | 33.22 | ||
phyB | phyC | -14.11 | 0.000*** | 27.29 | |
phyD | -7.55 | 0.000*** | 25.60 | ||
phyE | -6.41 | 0.046* | 28.13 | ||
phyC | phyD | 6.56 | 0.000*** | 30.46 | |
phyE | 7.69 | 0.000*** | 32.73 | ||
phyD | phyE | 1.14 | 0.060 | 31.67 | |
Temperature | 15°C | 25°C | 8.75 | 0.000*** | 29.72 |
35°C | 55.76 | 0.000*** | 29.99 | ||
25°C | 35°C | 47.01 | 0.000*** | 29.21 | |
Light | Darkness | White light | -8.89 | 0.000*** | 29.79 |
Red light | -12.55 | 0.000*** | 29.99 | ||
Far-red light | 16.13 | 0.230 | 30.11 | ||
White light | Red light | -3.66 | 0.272 | 30.18 | |
Far-red light | 25.02 | 0.034* | 29.67 | ||
Red light | Far-red light | 28.68 | 0.000*** | 28.79 |
Germination ratio among different genotype (G) | Environmental combinations of light and temperature |
---|---|
Significantly higher than wild type | phyA: WT15, WT25, WT35, RT25, and RT35 phyB: DT35, WT35, FRT15, FRT25, and FRT35 phyC: WT15, WT25, DT15, DT25, DT35, RT15, RT25, RT35, FRT15, FRT25, and FRT35 phyD: WT15, WT25, DT15, DT25, DT35, RT25, FRT25, and FRT35 phyE: WT25, RT15, RT25, and FRT25 |
Significantly lower than wild type | phyA: FRT15, and FRT35 phyB: WT15, and DT15 phyE: FRT35 |
No significant difference | phyA: DT15, DT25, DT35, RT15, and FRT25 phyB: WT25, DT25, RT15, RT25, and RT35 phyC: WT35 phyD: WT35, RT15, RT35, and FRT15 phyE: DT15, DT25, DT35, WT15, WT35, RT35, and FRT15 |
Maximum | phyA: WT15, RT15, WT25, and RT25 phyB: DT15, WT15, RT15, and WT25 phyC: WT15, RT15, WT25, and RT25 phyD: DT15, WT15, RT15, and WT25 phyE: WT15, RT15, WT25, and RT25 Col-0: DT15, WT15, RT15, and WT25 |
Minimum | phyA: FRT25, FRT35, DT35, and WT35 phyB: DT35, WT35, RT35, and FRT35 phyC: DT35, WT35, RT35, and FRT35 phyD: DT35, WT35, RT35, and FRT35 phyE: DT35, WT35, RT35, and FRT35 Col-0: DT35, WT35, RT35, and FRT35 |
Table 2 phys regulates seed germination in response to signals of light and temperature
Germination ratio among different genotype (G) | Environmental combinations of light and temperature |
---|---|
Significantly higher than wild type | phyA: WT15, WT25, WT35, RT25, and RT35 phyB: DT35, WT35, FRT15, FRT25, and FRT35 phyC: WT15, WT25, DT15, DT25, DT35, RT15, RT25, RT35, FRT15, FRT25, and FRT35 phyD: WT15, WT25, DT15, DT25, DT35, RT25, FRT25, and FRT35 phyE: WT25, RT15, RT25, and FRT25 |
Significantly lower than wild type | phyA: FRT15, and FRT35 phyB: WT15, and DT15 phyE: FRT35 |
No significant difference | phyA: DT15, DT25, DT35, RT15, and FRT25 phyB: WT25, DT25, RT15, RT25, and RT35 phyC: WT35 phyD: WT35, RT15, RT35, and FRT15 phyE: DT15, DT25, DT35, WT15, WT35, RT35, and FRT15 |
Maximum | phyA: WT15, RT15, WT25, and RT25 phyB: DT15, WT15, RT15, and WT25 phyC: WT15, RT15, WT25, and RT25 phyD: DT15, WT15, RT15, and WT25 phyE: WT15, RT15, WT25, and RT25 Col-0: DT15, WT15, RT15, and WT25 |
Minimum | phyA: FRT25, FRT35, DT35, and WT35 phyB: DT35, WT35, RT35, and FRT35 phyC: DT35, WT35, RT35, and FRT35 phyD: DT35, WT35, RT35, and FRT35 phyE: DT35, WT35, RT35, and FRT35 Col-0: DT35, WT35, RT35, and FRT35 |
Source | III class sum of squares | Degrees of freedom | Mean square | F | Significance | |
---|---|---|---|---|---|---|
phyA | Light | 15567 | 3 | 5189 | 209.187 | 0.000*** |
Temperature | 38280.25 | 2 | 19140.125 | 771.606 | 0.000*** | |
Genotype | 304.222 | 1 | 304.222 | 12.264 | 0.001*** | |
Light × temperature | 7754.083 | 6 | 1292.347 | 52.099 | 0.000*** | |
Genotype × light | 1510.111 | 3 | 503.37 | 20.293 | 0.000*** | |
Genotype × temperature | 285.194 | 2 | 142.597 | 5.749 | 0.006** | |
Light × temperature × genotype | 598.472 | 6 | 99.745 | 4.021 | 0.002** | |
phyB | Light | 4195.819 | 3 | 1398.606 | 65.051 | 0.000*** |
Temperature | 32368.583 | 2 | 16184.292 | 752.758 | 0.000*** | |
Genotype | 147.347 | 1 | 147.347 | 6.853 | 0.012* | |
Light × temperature | 3413.972 | 6 | 568.995 | 26.465 | 0.000*** | |
Genotype × light | 670.597 | 3 | 223.532 | 10.397 | 0.000*** | |
Genotype × temperature | 524.694 | 2 | 262.347 | 12.202 | 0.000*** | |
Light × temperature × genotype | 239.861 | 6 | 39.977 | 1.859 | 0.107 | |
phyC | Light | 6708.819 | 3 | 2236.273 | 118.217 | 0.000*** |
Temperature | 48960.194 | 2 | 24480.097 | 1294.102 | 0.000*** | |
Genotype | 5185.014 | 1 | 5185.014 | 274.098 | 0.000*** | |
Light × temperature | 3795.139 | 6 | 632.523 | 33.437 | 0.000*** | |
Genotype × light | 1587.028 | 2 | 793.514 | 41.948 | 0.000*** | |
Genotype × temperature | 67.819 | 3 | 22.606 | 1.195 | 0.322 | |
Light × temperature × genotype | 259.639 | 6 | 43.273 | 2.288 | 0.051 | |
phyD | Light | 8161.597 | 3 | 2720.532 | 138.137 | 0.000*** |
Temperature | 42934.194 | 2 | 21467.097 | 1090.008 | 0.000*** | |
Genotype | 1953.125 | 1 | 1953.125 | 99.171 | 0.000*** | |
Light × temperature | 5383.361 | 6 | 897.227 | 45.557 | 0.000*** | |
Genotype × light | 181.708 | 3 | 60.569 | 3.075 | 0.036* | |
Genotype × temperature | 715.75 | 2 | 357.875 | 18.171 | 0.000*** | |
Light × temperature × genotype | 80.25 | 6 | 13.375 | 0.679 | 0.667 | |
phyE | Light | 10177.944 | 3 | 3392.648 | 183.662 | 0.000*** |
Temperature | 47446.583 | 2 | 23723.292 | 1284.268 | 0.000*** | |
Genotype | 1549.389 | 1 | 1549.389 | 83.877 | 0.000*** | |
Light × temperature | 5985.306 | 6 | 997.551 | 54.003 | 0.000*** | |
Genotype × light | 528.611 | 3 | 176.204 | 9.539 | 0.000*** | |
Genotype × temperature | 3100.861 | 2 | 1550.431 | 83.933 | 0.000*** | |
Light × temperature × genotype | 334.139 | 6 | 55.69 | 3.015 | 0.014* |
Table 3 Multi-factor variance analysis of the interactions among genotype, light, and temperature in the regulation of seed germination in Arabidopsis
Source | III class sum of squares | Degrees of freedom | Mean square | F | Significance | |
---|---|---|---|---|---|---|
phyA | Light | 15567 | 3 | 5189 | 209.187 | 0.000*** |
Temperature | 38280.25 | 2 | 19140.125 | 771.606 | 0.000*** | |
Genotype | 304.222 | 1 | 304.222 | 12.264 | 0.001*** | |
Light × temperature | 7754.083 | 6 | 1292.347 | 52.099 | 0.000*** | |
Genotype × light | 1510.111 | 3 | 503.37 | 20.293 | 0.000*** | |
Genotype × temperature | 285.194 | 2 | 142.597 | 5.749 | 0.006** | |
Light × temperature × genotype | 598.472 | 6 | 99.745 | 4.021 | 0.002** | |
phyB | Light | 4195.819 | 3 | 1398.606 | 65.051 | 0.000*** |
Temperature | 32368.583 | 2 | 16184.292 | 752.758 | 0.000*** | |
Genotype | 147.347 | 1 | 147.347 | 6.853 | 0.012* | |
Light × temperature | 3413.972 | 6 | 568.995 | 26.465 | 0.000*** | |
Genotype × light | 670.597 | 3 | 223.532 | 10.397 | 0.000*** | |
Genotype × temperature | 524.694 | 2 | 262.347 | 12.202 | 0.000*** | |
Light × temperature × genotype | 239.861 | 6 | 39.977 | 1.859 | 0.107 | |
phyC | Light | 6708.819 | 3 | 2236.273 | 118.217 | 0.000*** |
Temperature | 48960.194 | 2 | 24480.097 | 1294.102 | 0.000*** | |
Genotype | 5185.014 | 1 | 5185.014 | 274.098 | 0.000*** | |
Light × temperature | 3795.139 | 6 | 632.523 | 33.437 | 0.000*** | |
Genotype × light | 1587.028 | 2 | 793.514 | 41.948 | 0.000*** | |
Genotype × temperature | 67.819 | 3 | 22.606 | 1.195 | 0.322 | |
Light × temperature × genotype | 259.639 | 6 | 43.273 | 2.288 | 0.051 | |
phyD | Light | 8161.597 | 3 | 2720.532 | 138.137 | 0.000*** |
Temperature | 42934.194 | 2 | 21467.097 | 1090.008 | 0.000*** | |
Genotype | 1953.125 | 1 | 1953.125 | 99.171 | 0.000*** | |
Light × temperature | 5383.361 | 6 | 897.227 | 45.557 | 0.000*** | |
Genotype × light | 181.708 | 3 | 60.569 | 3.075 | 0.036* | |
Genotype × temperature | 715.75 | 2 | 357.875 | 18.171 | 0.000*** | |
Light × temperature × genotype | 80.25 | 6 | 13.375 | 0.679 | 0.667 | |
phyE | Light | 10177.944 | 3 | 3392.648 | 183.662 | 0.000*** |
Temperature | 47446.583 | 2 | 23723.292 | 1284.268 | 0.000*** | |
Genotype | 1549.389 | 1 | 1549.389 | 83.877 | 0.000*** | |
Light × temperature | 5985.306 | 6 | 997.551 | 54.003 | 0.000*** | |
Genotype × light | 528.611 | 3 | 176.204 | 9.539 | 0.000*** | |
Genotype × temperature | 3100.861 | 2 | 1550.431 | 83.933 | 0.000*** | |
Light × temperature × genotype | 334.139 | 6 | 55.69 | 3.015 | 0.014* |
[1] | Alba R, Kelmenson PM, Cordonnier-Pratt MM, Pratt LH (2000). The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol Biol Evol 17, 362-373. |
[2] | Arana MV, Sánchez-Lamas M, Strasser B, Ibarra SE, Cerdán PD, Botto JF, Sánchez RA (2014). Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ 37, 2014-2023. |
[3] | Arana MV, Tognacca RS, Estravis-Barcalá M, Sánchez RA, Botto JF (2017). Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds. Plant Cell Environ 40, 3113-3121. |
[4] | Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952). A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38, 662-666. |
[5] | Cai SY, Liu JX, Wang GF, Wu LY, Song JP (2023). Regulatory mechanism of melatonin on tomato seed germination under Cd2+ stress. Chin Bull Bot 58, 720-732. (in Chinese) |
蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平 (2023). 褪黑素促进镉胁迫下番茄种子萌发的调控机理. 植物学报 58, 720-732. | |
[6] | Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64, 403-427. |
[7] | Chen D, Lyu M, Kou XX, Li J, Yang ZX, Gao LL, Li Y, Fan LM, Shi H, Zhong SW (2022). Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell 82, 3015-3029. |
[8] | Dechaine JM, Gardner G, Weinig C (2009). Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ 32, 1297-1309. |
[9] | Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination. New Phytol 171, 501-523. |
[10] | Footitt S, Huang ZY, Clay HA, Mead A, Finch-Savage WE (2013). Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J 74, 1003-1015. |
[11] | Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003). Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131, 1340-1346. |
[12] | Halliday KJ, Davis SJ (2016). Light-sensing phytochromes feel the heat. Science 354, 832-833. |
[13] | Hennig L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E (2002). Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128, 194-200. |
[14] | Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007). A new role for phytochromes in temperature-dependent germination. New Phytol 174, 735- 741. |
[15] | Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C (2015). Systematic analysis of how phytochrome B dimerization determines its specificity. Nat Plants 1, 15090. |
[16] | Li ZH, Wang XY, Liu YL, Zhao JH (2022). NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. Acta Agron Sin 48, 99-107. (in Chinese) |
李振华, 王显亚, 刘一灵, 赵杰宏 (2022). NtPHYB1与光温信号互作调控烟草种子萌发. 作物学报 48, 99-107. | |
[17] | Piskurewicz U, Turečková V, Lacombe E, Lopez-Molina L (2009). Far-red light inhibits germination through DELLA- dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28, 2259-2271. |
[18] | Qian WJ, Zhu YX, Chen QS, Wang SY, Chen LL, Liu T, Tang HR, Yao HY (2023). Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis. Front Plant Sci 14, 1132881. |
[19] | Saini HS, Consolacion ED, Bassi PK, Spencer MS (1989). Control processes in the induction and relief of thermoinhibition of lettuce seed germination: actions of phytochrome and endogenous ethylene. Plant Physiol 90, 311- 315. |
[20] | Sharrock RA, Clack T, Goosey L (2003). Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes. Plant Mol Biol 52, 135-142. |
[21] | Shinomura T, Nagatani A, Chory J, Furuya M (1994). The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104, 363-371. |
[22] | Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996). Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93, 8129-8133. |
[23] | Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD (2010). Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA 107, 4776-4781. |
[24] | Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He ZS, Li Y, Harvey D, Larson TR, Graham IA (2018). MOTHER- OF-FT-AND-TFL1represses seed germination under far- red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 115, 8442- 8447. |
[25] | Viczián A, Klose C, Hiltbrunner A, Nagy F (2021). Editorial: plant phytochromes: from structure to signaling and beyond. Front Plant Sci 12, 811379. |
[26] | Wang SH, Huang CJ (2008). Effect of low temperature on tobacco seed germination. China Seed Ind (5), 48-49. (in Chinese) |
王树会, 黄成江 (2008). 低温对烟草种子萌发的影响. 中国种业 (5), 48-49. | |
[27] | Wang SH, Zhao GK, Yang ZQ, Zhang HY (2009). The impact of extreme temperature on seed germination of tobacco. China Seed Ind (9), 52-53. (in Chinese) |
王树会, 赵高坤, 杨志强, 张红艳 (2009). 极端高温对烟草种子萌发的影响. 中国种业 (9), 52-53. | |
[28] | Wang YF, He HX, Zhang MS, Peng SW, Xu L, Yang XR, Zhai X (2009). Effects of light, temperature and salt stress on seed germination of Hongda (a tobacco variety). Seed 28(12), 19-22. (in Chinese) |
王玉芳, 贺化祥, 张明生, 彭斯文, 徐利, 杨小蕊, 翟欣 (2009). 光照、温度和盐胁迫对红花大金元种子萌发的影响. 种子 28(12), 19-22. | |
[29] | Wei SW, Yang X, Huo GT, Ge GJ, Liu HY, Luo LJ, Hu JG, Huang DF, Long P (2020). Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int J Mol Sci 21, 1481. |
[30] | Wilson RL, Kim H, Bakshi A, Binder BM (2014). The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165, 1353-1366. |
[31] | Yang LW, Liu SR, Lin RC (2019). Advances in light and hormones in regulating seed dormancy and germination. Chin Bull Bot 54, 569-581. (in Chinese) |
杨立文, 刘双荣, 林荣呈 (2019). 光信号与激素调控种子休眠和萌发研究进展. 植物学报 54, 569-581. | |
[32] | Zhang HB, Liu P, Liu LH, Lan HY, Zhang FC (2007). Seed germination characteristics and ecological adaptability of Arabidopsis pumila, a Xinjiang-originated ephemeral plant species. Acta Ecol Sin 27, 4310-4316. (in Chinese) |
张海波, 刘彭, 刘立鸿, 兰海燕, 张富春 (2007). 新疆短命植物小拟南芥(Arabidopsis pumila)种子萌发特性及其生态适应性. 生态学报 27, 4310-4316. | |
[33] | Zhao QB, Song P, Wang GZ, Lü B, Cao XZ (2001). Effect of light, temperature and phytohormone on seed germination and seedling growth of Nicotiana tabacum. Acta Tabacaria Sin 4, 29-32. (in Chinese) |
招启柏, 宋平, 王广志, 吕冰, 曹显祖 (2001). 光、温、激素对烟草种子萌发和幼苗生长的影响. 中国烟草学报 4, 29-32. | |
[34] | Zhao XT, Mao KT, Xu JH, Zheng C, Luo XF, Shu K (2021). Protein phosphorylation and its regulatory roles in seed dormancy and germination. Chin Bull Bot 56, 488-499. (in Chinese) |
赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯 (2021). 蛋白质磷酸化修饰与种子休眠及萌发调控. 植物学报 56, 488-499. |
[1] | Xiao-Hong YAN Wen-Hai HU. Differences in photoprotective mechanisms during winter in three evergreen broadleaf species in subtropical region [J]. Chin J Plant Ecol, 2025, 49(预发表): 0-0. |
[2] | Zhou xin-yu, huiliang liu, GAO Bei, LU Yuting, TAO Lingqing, WEN Xiaohu, ZHANG Lan, ZHANG Yuan-Ming. Reproductive Biology of the Endangered and Endemic Species Nymphaea candida C. Presl in Xinjiang [J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[3] | SHANGGUAN Yao-Yao, SU Shi-Ping, GU Xue-Dan, ZHANG Zheng-Zhong, ZHAO Hu, LI Yi, WEI Xing-Yu. Response of Reaumuria songorica seedlings to photoperiod and light quality ratio [J]. Chin J Plant Ecol, 2025, 49(5): 788-800. |
[4] |
Liang Ma, Yongqing Yang, Yan Guo.
“Next-generation Green Revolution” Genes: Toward New “Climate-Smart” Crop Breeding [J]. Chinese Bulletin of Botany, 2025, 60(4): 489-498. |
[5] | LI Xin-Yi, ZHANG Li-Fang, WU You-Gui, GUO Jing, LAN Rong-Guang, LÜ Hong-Fei, YU Ming-Jian. Growth characteristics of Abies beshanzuensis seedlings at different altitudes and the influencing factors [J]. Chin J Plant Ecol, 2025, 49(4): 610-623. |
[6] | OUYANG Zi-Long, JIA Xiang-Lu, SHI Jing-Zhong, TENG Wei-Chao, LIU Xiu. Effects of growth regulators on photosynthetic characteristics of Rhizophora stylosa seedlings under low temperature stress and re-warming [J]. Chin J Plant Ecol, 2025, 49(4): 638-652. |
[7] | GE Xiao-Cai, LI Jing-Long, SUN Jun, WU Pan-Pan, HU Dan-Dan, CHENG Dong-Liang, ZHONG Quan-Lin. Characteristics of soil respiration components and influencing factors in the subalpine meadows of Wuyi Mountain [J]. Chin J Plant Ecol, 2025, 49(3): 502-512. |
[8] | Su Chen, Niu Yufan, Xu Hang, Wang Xiling, Yu Yingjun, He Yuqing, Wang Lei. Advances of Plant Circadian Clock Response to Light and Temperature Signals [J]. Chinese Bulletin of Botany, 2025, 60(3): 315-341. |
[9] | Bei Fan, Min Ren, Yanfeng Wang, Fengfeng Dang, Guoliang Chen, Guoting Cheng, Jinyu Yang, Huiru Sun. Functions of SlWRKY45 in Response to Low-temperature and Drought Stress in Tomato [J]. Chinese Bulletin of Botany, 2025, 60(2): 186-203. |
[10] | QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010. |
[11] | SUN Long, LI Wen-Bo, LOU Hu, YU Cheng, HAN Yu, HU Tong-Xin. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(6): 770-779. |
[12] | Yanjun Jing, Rongcheng Lin. Blue Light Receptor CRY2 Transforms into a ‘dark dancer’ [J]. Chinese Bulletin of Botany, 2024, 59(6): 878-882. |
[13] | YUAN Han, ZHONG Ai-Wen, LIU Song-Ping, PENG Yan-Song, XU Lei. Differences in the germination characteristics of Schoenoplectiella triangulata seeds and methods for breaking seed dormancy [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[14] | Qiguang Xie, Xiaodong Xu. Plant Circadian Clock in Agricultural Production in Response to Global Warming [J]. Chinese Bulletin of Botany, 2024, 59(4): 635-650. |
[15] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||