Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (1): 42-55.DOI: 10.11983/CBB21158
• RESEARCH PAPER • Previous Articles Next Articles
Xia Wang1, Wei Yan1, Zhiqin Zhou2, Zhenyi Chang1, Minting Zheng1, Xiaoyan Tang1,2, Jianxin Wu1,*()
Received:
2021-09-14
Accepted:
2021-11-17
Online:
2022-01-01
Published:
2022-01-17
Contact:
Jianxin Wu
Xia Wang, Wei Yan, Zhiqin Zhou, Zhenyi Chang, Minting Zheng, Xiaoyan Tang, Jianxin Wu. Identification and Mapping of a Rice Male Sterility Mutant ms102[J]. Chinese Bulletin of Botany, 2022, 57(1): 42-55.
Primers | Sequences (5′-3′) |
---|---|
OsACTIN-qPCR-F | GCTATGTACGTCGCCATCCA |
OsACTIN-qPCR-R | GGACAGTGTGGCTGACACCAT |
RTS-qPCR-F | ACATGTGGACTCGCTTGACT |
RTS-qPCR-R | CATGGCTGCATGCAGATTCAT |
TDR-qPCR-F | TGCTCTGGGAGCACAAGCC |
TDR-qPCR-R | CTCGCTGTCCCTCACCATG |
UDT1-qPCR-F | GAAGCACTCTGCAGCTAC |
UDT1-qPCR-R | CTGCGTAGCCGTAGAAGG |
DTM1-qPCR-F | AATTTAAGCCCTATCCCCTAAG |
DTM1-qPCR-R | GAAGGTGGATTCCACTAGCTA |
PTC1-qPCR-F | CACCAGATCATGGACCTCTG |
PTC1-qPCR-R | AGCAGCCTCAGCTCCATGTG |
DPW-qPCR-F | ACCACAGGAGACACGGTGATG |
DPW-qPCR-R | CTTGGCCTGATGGTGACAA |
PAIR1-qPCR-F | GGATGGACCCAGATTAACC |
PAIR1-qPCR-R | CTGTTTAGGTGCCACCCTGT |
PAIR2-qPCR-F | TGCCAGAGGAGAGGACCATTC |
PAIR2-qPCR-R | CACGAGATGCTTGCTATTGAC |
DTD-qPCR-F | TCATGAGTCTTTGAGCCGCA |
DTD-qPCR-R | CACCTTCGCTCCAAATCTGT |
OsCP1-qPCR-F | TGCAAGGATCACTCCACCTG |
OsCP1-qPCR-R | GGCTGTTCTTGCTCTTGGAG |
OsMSP1-qPCR-F | AGCATCGCGAGTAAGATGC |
OsMSP1-qPCR-R | GTAGCCTTGTAACTTCAAGTAGGA |
CYP703A3-qPCR-F | TGTACTGCTTTCTTTGCCCG |
CYP703A3-qPCR-R | GCAGCAATCATGTCCTGCAT |
CYP704B2-qPCR-F | GCTGGTTGATGACTTCACCT |
CYP704B2-qPCR-R | CGACAGTATGTCGTGCTTGAT |
OsGAMYB-qPCR-F | GCGACGGTATCATGTTCAAT |
OsGAMYB-qPCR-R | GTCGCATAAGAGAACATCTG |
Table 1 Sequences of primers for qRT-PCR
Primers | Sequences (5′-3′) |
---|---|
OsACTIN-qPCR-F | GCTATGTACGTCGCCATCCA |
OsACTIN-qPCR-R | GGACAGTGTGGCTGACACCAT |
RTS-qPCR-F | ACATGTGGACTCGCTTGACT |
RTS-qPCR-R | CATGGCTGCATGCAGATTCAT |
TDR-qPCR-F | TGCTCTGGGAGCACAAGCC |
TDR-qPCR-R | CTCGCTGTCCCTCACCATG |
UDT1-qPCR-F | GAAGCACTCTGCAGCTAC |
UDT1-qPCR-R | CTGCGTAGCCGTAGAAGG |
DTM1-qPCR-F | AATTTAAGCCCTATCCCCTAAG |
DTM1-qPCR-R | GAAGGTGGATTCCACTAGCTA |
PTC1-qPCR-F | CACCAGATCATGGACCTCTG |
PTC1-qPCR-R | AGCAGCCTCAGCTCCATGTG |
DPW-qPCR-F | ACCACAGGAGACACGGTGATG |
DPW-qPCR-R | CTTGGCCTGATGGTGACAA |
PAIR1-qPCR-F | GGATGGACCCAGATTAACC |
PAIR1-qPCR-R | CTGTTTAGGTGCCACCCTGT |
PAIR2-qPCR-F | TGCCAGAGGAGAGGACCATTC |
PAIR2-qPCR-R | CACGAGATGCTTGCTATTGAC |
DTD-qPCR-F | TCATGAGTCTTTGAGCCGCA |
DTD-qPCR-R | CACCTTCGCTCCAAATCTGT |
OsCP1-qPCR-F | TGCAAGGATCACTCCACCTG |
OsCP1-qPCR-R | GGCTGTTCTTGCTCTTGGAG |
OsMSP1-qPCR-F | AGCATCGCGAGTAAGATGC |
OsMSP1-qPCR-R | GTAGCCTTGTAACTTCAAGTAGGA |
CYP703A3-qPCR-F | TGTACTGCTTTCTTTGCCCG |
CYP703A3-qPCR-R | GCAGCAATCATGTCCTGCAT |
CYP704B2-qPCR-F | GCTGGTTGATGACTTCACCT |
CYP704B2-qPCR-R | CGACAGTATGTCGTGCTTGAT |
OsGAMYB-qPCR-F | GCGACGGTATCATGTTCAAT |
OsGAMYB-qPCR-R | GTCGCATAAGAGAACATCTG |
Primers | Sequences (5'-3') |
---|---|
S1-HRM-F | GACAGGCAAGCAGAAAACCTG |
S1-HRM-R | GTGCAGGTAGCACATCATCCT |
S2-HRM-F | CTACAGATATATACAGGACGGTG |
S2-HRM-R | GCTAAGGTAGCAACGTACACAG |
S3-HRM-F | GATGGAGACTCACGTCCAGA |
S3-HRM-R | CCACAGCCCTCATTTTCGT |
Table 2 Sequences of primers for high resolution melting (HRM)
Primers | Sequences (5'-3') |
---|---|
S1-HRM-F | GACAGGCAAGCAGAAAACCTG |
S1-HRM-R | GTGCAGGTAGCACATCATCCT |
S2-HRM-F | CTACAGATATATACAGGACGGTG |
S2-HRM-R | GCTAAGGTAGCAACGTACACAG |
S3-HRM-F | GATGGAGACTCACGTCCAGA |
S3-HRM-R | CCACAGCCCTCATTTTCGT |
Figure 1 Phenotype analysis of the rice ms102 (A) Phenotype of mature plants (bar=9 cm); (B) Tiller number of mature wild type (WT) and ms102 plant (n=23); (C) Leaf color of WT and ms102 plant at flowering (bar=1 cm); (D) Mature spikelet without palea and lemma (bar=1 mm); (E) Flowering spikelet, the arrow indicates a dehisced anther (bar=1 cm); (F), (G) I2-KI-stained pollen of WT and ms102 mutant (bars=50 μm); (H) Mature panicles (bar=2.4 cm)
Fertile plants | Male sterility plants | χ2(3:1) | χ20.05 |
---|---|---|---|
359 | 102 | 2.034 | 3.841 |
Table 3 Segregation of the F2 progeny of rice WT × ms102
Fertile plants | Male sterility plants | χ2(3:1) | χ20.05 |
---|---|---|---|
359 | 102 | 2.034 | 3.841 |
Figure 2 Transverse sections images of WT and ms102 anthers at the developmental stages 7-12 BMs: Binuclear microspores; DMs: Degenerated microspores; E: Epidermis; En: Endothecium; M: Middle layer; Mp: Mature pollen; Ms: Microspores; PMC: Pollen mother cell; ST: Swollen tapetum; T: Tapetum; Tds: Tetrads. Bars=10 μm
Figure 3 Transmission electron microscope images of WT and ms102 anthers at the developmental stages 9-12 (A), (D) Stage 9; (B), (E) Stage 10 (the arrows indicate the microspore wall); (C), (F) Stage 12; (G), (H) The magnified region of dashed box in B and E (the arrows indicate the Ubisch bodies); T: Tapetum; Ms: Microspores; C: Cuticle. (A), (B), (D), (E) Bars=2 μm; (C), (F), (G), (H) Bars=1 μm
Figure 4 Scanning electron microscope images of WT and ms102 anthers at developmental stage 12 (A), (C), (E), (G) The external surfaces of anther wall; (B), (F) Pollen grains; (D), (H) Ubisch bodies. (A), (E) Bars =100 μm; (B), (C), (F), (G) Bars=10 μm; (D), (H) Bars=2 μm
Figure 5 Expression of genes related to pollen development in WT and ms102 anthers Anthers at stages 7-12 were used for qRT-PCR. OsACTIN1 served as an internal control. Data are shown as means±SD (n=3). * P<0.05, ** P<0.01, *** P<0.001
Chr. locus | Physical location | Genotype | SNP index | Gene |
---|---|---|---|---|
Chr. 1 | 39,147,186 (S1) | C→T | 0.8966 | Intergenic |
Chr. 1 | 39,167,971 (S2) | G→A | 0.8966 | Intergenic |
Chr. 1 | 40,599,831 (S3) | C→T | 0.9474 | LOC_Os01g7-0140-LOC_O-s01g70150 |
Table 4 Candidate genes and annotation information
Chr. locus | Physical location | Genotype | SNP index | Gene |
---|---|---|---|---|
Chr. 1 | 39,147,186 (S1) | C→T | 0.8966 | Intergenic |
Chr. 1 | 39,167,971 (S2) | G→A | 0.8966 | Intergenic |
Chr. 1 | 40,599,831 (S3) | C→T | 0.9474 | LOC_Os01g7-0140-LOC_O-s01g70150 |
The number of male sterile plants | The number of fertile plants | |||||
---|---|---|---|---|---|---|
Physical location | S1 | S2 | S3 | S1 | S2 | S3 |
Wild type | 1 | 1 | 0 | 25 | 25 | 23 |
Heterozygote | 8 | 8 | 0 | 19 | 19 | 21 |
Mutant | 44 | 44 | 53 | 0 | 0 | 0 |
Table 5 Genotype-phenotype correlation analyses of the three candidate SNP sites
The number of male sterile plants | The number of fertile plants | |||||
---|---|---|---|---|---|---|
Physical location | S1 | S2 | S3 | S1 | S2 | S3 |
Wild type | 1 | 1 | 0 | 25 | 25 | 23 |
Heterozygote | 8 | 8 | 0 | 19 | 19 | 21 |
Mutant | 44 | 44 | 53 | 0 | 0 | 0 |
Figure 6 Gene structures of LOC_Os01g70140 and LOC_Os01g70150 and mutant phenotypes (A) The gene structures and mutation sites of LOC_Os01g70140 and LOC_Os01g70150; (B)-(D) Morphology of mature anther and pistil (bars=1 mm); (E)-(G) Mature pollen grains stained with I2-KI (bars=100 μm).
Figure 8 The phenotype of the F1 progeny of dpw2/+ × ms102 The phenotype of the F1 progeny of dpw2/+ × ms102 (A)-(D) Morphology of mature anther and pistil (bars=1 mm); (E)-(H) Mature pollen grains stained with I2-KI (bars=100 μm).
[1] | 陈竹锋, 卢嘉威, 卢启清, 王娜, 王成旭, 谢刚, 周向阳, 唐晓艳 (2014). 优质水稻黄华占雄性不育突变体的筛选及初步分析. 广东农业科学 41(19), 1-4. |
[2] | 邓兴旺, 王海洋, 唐晓艳, 周君莉, 陈浩东, 何光明, 陈良碧, 许智宏 (2013). 杂交水稻育种将迎来新时代. 中国科学: 生命科学 43, 864-868. |
[3] | 李文杰 (2019). 水稻花粉发育基因LSP2的克隆及功能研究. 硕士论文. 成都: 四川农业大学. pp. 1-2. |
[4] | 倪浩凌, 吴文诗, 颜艳敏, 方亦圆, 王嘉茵, 陈碧湖, 李芷怡, 唐晓艳, 吴建新 (2020). 水稻穗发芽突变体的筛选及候选基因鉴定. 植物遗传资源学报 21, 1214-1220. |
[5] |
张彤, 郭亚璐, 陈悦, 马金姣, 兰金苹, 燕高伟, 刘玉晴, 徐珊, 李莉云, 刘国振, 窦世娟 (2019). 水稻OsPR10A的表达特征及其在干旱胁迫应答过程中的功能. 植物学报 54, 711-722.
DOI |
[6] | Abbas A, Yu P, Sun LP, Yang ZF, Chen DB, Cheng SH, Cao LY (2021). Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci 12, 629314. |
[7] |
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012). Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30, 174-178.
DOI URL |
[8] |
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G (2019). Genetic and molecular control of floral organ iden- tity in cereals. Int J Mol Sci 20, 2743
DOI URL |
[9] |
Ariizumi T, Toriyama K (2011). Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62, 437-460.
DOI PMID |
[10] |
Bai WT, Wang PR, Hong J, Kong WY, Xiao YJ, Yu XW, Zheng H, You SM, Lu JY, Lei DK, Wang CL, Wang QM, Liu SJ, Liu X, Tian YL, Chen LM, Jiang L, Zhao ZG, Wu CY, Wan JM (2019). Earlier Degraded Tapetum 1 (EDT1) encodes an ATP-citrate lyase required for tapetum programmed cell death. Plant Physiol 181, 1223-1238.
DOI URL |
[11] |
Bayer A, Ma XY, Stöckigt J (2004). Acetyltransfer in natural product biosynthesis-functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem 12, 2787-2795.
DOI URL |
[12] |
Chang ZY, Chen ZF, Wang N, Xie G, Lu JW, Yan W, Zhou JL, Tang XY, Deng XW (2016a). Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA 113, 14145-14150.
DOI URL |
[13] |
Chang ZY, Chen ZF, Yan W, Xie G, Lu JW, Wang N, Lu QQ, Yao N, Yang GZ, Xia JX, Tang XY (2016b). An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Sci 253, 21-30.
DOI URL |
[14] |
Chang ZY, Jin MN, Yan W, Chen H, Qiu SJ, Fu S, Xia JX, Liu YC, Chen ZF, Wu JX, Tang XY (2018). The ATP- binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice 11, 58.
DOI URL |
[15] |
Chang ZY, Xu CJ, Huang XY, Yan W, Qiu SJ, Yuan ST, Ni HL, Chen SJ, Xie G, Chen ZF, Wu JX, Tang XY (2020). The plant-specific ABERRANT GAMETOGENESIS 1 gene is essential for meiosis in rice. J Exp Bot 71, 204-218.
DOI URL |
[16] |
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010). Food security: the challenge of feeding 9 billion people. Science 327, 812-818.
DOI URL |
[17] |
Gómez JF, Talle B, Wilson ZA (2015). Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57, 876-891.
DOI URL |
[18] |
Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003). Spectrum of chemically induced mutations from a large-scale reverse- genetic screen in Arabidopsis. Genetics 164, 731-740.
DOI URL |
[19] |
Ji CH, Li HY, Chen LB, Xie M, Wang FP, Chen YL, Liu YG (2013). A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant 6, 1715-1718.
DOI URL |
[20] |
Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005). Rice Undeveloped Tapetum 1 is a major regulator of early tapetum development. Plant Cell 17, 2705-2722.
PMID |
[21] |
Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004). Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16, 33-44.
DOI URL |
[22] | Kim YS, Schumaker KS, Zhu JK (2006). EMS mutagenesis of Arabidopsis. In: Salinas J, Sanchez-Serrano JJ, eds. Arabidopsis Protocols. Totowa: Humana Press. pp. 101- 103. |
[23] |
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, Liang WQ, Zhang DB (2010a). Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22, 173-190.
DOI URL |
[24] |
Li H, Yuan Z, Vizcay-Barrena G, Yang CY, Liang WQ, Zong J, Wilson ZA, Zhang DB (2011). PERSISTENT TAPETAL CELL 1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156, 615-630.
DOI URL |
[25] |
Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014.
DOI URL |
[26] |
Li YD, Chu ZZ, Liu XG, Jing HC, Liu YG, Hao DY (2010b). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J Integr Plant Biol 52, 1036-1042.
DOI URL |
[27] |
Liao CC, Yan W, Chen ZF, Xie G, Deng XW, Tang XY (2021). Innovation and development of the third-generation hybrid rice technology. Crop J 9, 693-701.
DOI URL |
[28] |
Liu ZH, Bao WJ, Liang WQ, Yin JY, Zhang DB (2010). Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol 52, 670-678.
DOI URL |
[29] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
DOI PMID |
[30] |
Lochlainn SÓ, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR (2011). High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 7, 43.
DOI PMID |
[31] |
Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006). RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue- specific gene expression in different plant species. Plant Mol Biol 62, 397-408.
DOI URL |
[32] |
Ma H (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56, 393-434.
DOI URL |
[33] |
Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003). The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15, 1728-1739.
DOI URL |
[34] |
Nonomura KI, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006). PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119, 217-225.
DOI URL |
[35] |
Nonomura KI, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004). The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16, 1008-1020.
DOI URL |
[36] |
Pan XY, Yan W, Chang ZY, Xu YC, Luo M, Xu CJ, Chen ZF, Wu JX, Tang XY (2020). OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways. Plant Cell Physiol 61, 988-1004.
DOI URL |
[37] |
Peng XQ, Wang ML, Li YQ, Yan W, Chang ZY, Chen ZF, Xu CJ, Yang CW, Deng XW, Wu JX, Tang XY (2020). Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. J Integr Plant Biol 62, 1227-1245.
DOI URL |
[38] |
Quilichini TD, Grienenberger E, Douglas CJ (2015). The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113, 170-182.
DOI PMID |
[39] |
Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L, Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB (2011). Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23, 2225-2246.
DOI URL |
[40] |
Suzuki H, Nakayama T, Nishino T (2003). Proposed mecha- nism and functional amino acid residues of malonyl-CoA: anthocyanin 5-O-glucoside-6'''-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry 42, 1764-1771.
DOI URL |
[41] |
Wang B, Fang RQ, Chen FM, Han JL, Liu YG, Chen LT, Zhu QL (2020). A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice. J Integr Plant Biol 62, 1594-1606.
DOI URL |
[42] | Xu DW, Shi JX, Rautengarten C, Yang L, Qian XL, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood JL, Scheller HV, Hu JP, Zhang DB, Liang WQ (2017). DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol 173, 240-255. |
[43] | Yan W, Chen ZF, Lu JW, Xu CJ, Xie G, Li YQ, Deng XW, He H, Tang XY (2017). Simultaneous identification of multiple causal mutations in rice. Front Plant Sci 7, 2055. |
[44] |
Yan W, Deng XW, Yang C, Tang X (2021). The genome-wide EMS mutagenesis bias correlates with sequence context and chromatin structure in rice. Front Plant Sci 12, 579675.
DOI URL |
[45] |
Yang XJ, Wu D, Shi JX, He Y, Pinot F, Grausem B, Yin CS, Zhu L, Chen MJ, Luo ZJ, Liang W, Zhang D (2014). Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56, 979-994.
DOI URL |
[46] |
Yang ZF, Liu L, Sun LP, Yu P, Zhang PP, Abbas A, Xiang XJ, Wu WX, Zhang YX, Cao LY, Cheng SH (2019). OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol 99, 175-191.
DOI URL |
[47] |
Yi J, Kim SR, Lee DY, Moon S, Lee YS, Jung KH, Hwang I, An G (2012). The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. Plant J 70, 256-270.
DOI URL |
[48] | Zhang DB, Luo X, Zhu L (2011). Cytological analysis and genetic control of rice anther development. J Genet Genomics 38, 379-390. |
[49] |
Zhang HH, Wang ML, Li YQ, Yan W, Chang ZY, Ni HL, Chen ZF, Wu JX, Xu CJ, Deng XW, Tang XY (2020). GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development. J Integr Plant Biol 62, 1574-1593.
DOI URL |
[1] | Lumei He, Bojun Ma, Xifeng Chen. Advances on the Executor Resistance Genes in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[3] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
[4] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[5] | Yanli Fang, Chuanyu Tian, Ruyi Su, Yapei Liu, Chunlian Wang, Xifeng Chen, Wei Guo, Zhiyuan Ji. Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak [J]. Chinese Bulletin of Botany, 2024, 59(1): 1-9. |
[6] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[7] | Tian Chuanyu, Fang Yanli, Shen Qing, Wang Hongjie, Chen Xifeng, Guo Wei, Zhao Kaijun, Wang Chunlian, Ji Zhiyuan. Genotypic Diversity and Pathogenisity of Xanthomonas oryzae pv. oryzae Isolated from Southern China in 2019-2021 [J]. Chinese Bulletin of Botany, 2023, 58(5): 743-749. |
[8] | Dai Ruohui, Qian Xinyu, Sun Jinglei, Lu Tao, Jia Qiwei, Lu Tianqi, Lu Mei, Rao Yuchun. Research Progress on the Mechanisms of Leaf Color Regulation and Related Genes in Rice [J]. Chinese Bulletin of Botany, 2023, 58(5): 799-812. |
[9] | Yuping Yan, Xiaoqi Yu, Deyong Ren, Qian Qian. Genetic Mechanisms and Breeding Utilization of Grain Number Per Panicle in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 359-372. |
[10] | Jingjing Zhao, Haibin Jia, Tien Ming Lee. Market status and the sustainable utilization strategy of wild earthworm (earth dragon) for medicinal use [J]. Biodiv Sci, 2023, 31(3): 22478-. |
[11] | Jiayi Jin, Yiting Luo, Huimin Yang, Tao Lu, Hanfei Ye, Jiyi Xie, Kexin Wang, Qianyu Chen, Yuan Fang, Yuexing Wang, Yuchun Rao. QTL Mapping and Expression Analysis on Candidate Genes Related to Chlorophyll Content in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 394-403. |
[12] | Shang Sun, Yingying Hu, Yangshuo Han, Chao Xue, Zhiyun Gong. Double-stranded Labelled Oligo-FISH in Rice Chromosomes [J]. Chinese Bulletin of Botany, 2023, 58(3): 433-439. |
[13] | Yuqiang Liu, Jianmin Wan. The Host Controls the Protein Level of Insect Effectors to Balance Immunity and Growth [J]. Chinese Bulletin of Botany, 2023, 58(3): 353-355. |
[14] | Qi Wang, Yunzhe Wu, Xueying Liu, Lili Sun, Hong Liao, Xiangdong Fu. The Rice Receptor-like Kinases Function as Key Regulators of Plant Development and Adaptation to the Environment [J]. Chinese Bulletin of Botany, 2023, 58(2): 199-213. |
[15] | Liu Xiaolong, Ji Ping, Yang Hongtao, Ding Yongdian, Fu Jialing, Liang Jiangxia, Yu Congcong. Priming Effect of Abscisic Acid on High Temperature Stress During Rice Heading-flowering Stage [J]. Chinese Bulletin of Botany, 2022, 57(5): 596-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||