Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (2): 265-276.DOI: 10.11983/CBB18194
Special Issue: 逆境生物学专辑 (2019年54卷2期)
• SPECIAL TOPICS • Previous Articles Next Articles
Dewei Yang1,2,Mo Wang1,Libo Han1,Dingzhong Tang1,Shengping Li1,3,*()
Received:
2018-09-12
Accepted:
2019-01-08
Online:
2019-03-01
Published:
2019-09-01
Contact:
Shengping Li
Dewei Yang,Mo Wang,Libo Han,Dingzhong Tang,Shengping Li. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi[J]. Chinese Bulletin of Botany, 2019, 54(2): 265-276.
染色体 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 总计 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QTLs数量 | 34 | 22 | 8 | 16 | 3 | 18 | 19 | 8 | 10 | 1 | 16 | 28 | 183 |
抗性蛋白数量 | 45 | 33 | 18 | 31 | 20 | 35 | 27 | 47 | 23 | 31 | 154 | 59 | 523 |
Table 1 Identified QTL of blast resistance and protein of NBS domain in rice
染色体 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 总计 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QTLs数量 | 34 | 22 | 8 | 16 | 3 | 18 | 19 | 8 | 10 | 1 | 16 | 28 | 183 |
抗性蛋白数量 | 45 | 33 | 18 | 31 | 20 | 35 | 27 | 47 | 23 | 31 | 154 | 59 | 523 |
基因 | 染色体 | 供体 | 编码蛋白 | 参考文献 |
---|---|---|---|---|
Pi37 | 1 | St. No. 1 | NBS-LRR | Lin et al., 2007 |
Pish | 1 | 日本晴 | NBS-LRR | Takahashi et al., 2010b |
Pit | 1 | K59 | NBS-LRR | Hayashi et al., 2010 |
Pi35 | 1 | Hokkai 188 | NBS-LRR | Fukuoka et al., 2014 |
Pi64 | 1 | NBS-LRR | Ma et al., 2015 | |
Pib | 2 | IR24, BL1 | NBS-LRR | Wang et al., 1999 |
Bsrd-1 | 3 | 地谷 | MYB转录因子 | Li et al., 2017 |
pi-21 | 4 | Owarihatamochi | 富含脯氨酸蛋白 | Fukuoka et al., 2009 |
Pi-63 | 4 | Kahei | NBS-LRR | Xu et al., 2014 |
Pi2 | 6 | Jefferson | NBS-LRR | Zhou et al., 2006 |
Pi9 | 6 | 75-1-127 | NBS-LRR | Qu et al., 2006 |
Piz-t | 6 | Zenith | NBS-LRR | Zhou et al., 2006 |
Pid-2 | 6 | 地谷 | 类受体激酶蛋白 | Chen et al., 2006 |
Pid-3 | 6 | 地谷 | NBS-LRR | Shang et al., 2009 |
Pi-25 | 6 | 谷梅2号 | NBS-LRR | Chen et al., 2011 |
Pid3-A4 | 6 | A4 (普通野生稻) | NBS-LRR | Lv et al., 2013 |
Pi50 | 6 | Er-Ba-zhan (EBZ) | NBS-LRR | Zhu et al., 2012 |
Pigm | 6 | 谷梅4号 | NBS-LRR | Deng et al., 2017 |
Pi-36 | 8 | Q61 | NBS-LRR | Liu et al., 2007 |
Pi-5/Pi-3/Pii | 9 | Tetep | NBS-LRR | Lee et al., 2009 |
Pii | 9 | Hitomebore | NBS-LRR | Takagi et al., 2013 |
Pi56 | 9 | 三黄占2号 | NBS-LRR | Liu et al., 2013 |
Pikh/Pi-54 | 11 | K3 | NBS-LRR | Sharma et al., 2005 |
Pik-m | 11 | Tsuyuake | NBS-LRR | Ashikawa et al., 2008 |
Pb1 | 11 | Modan | NBS-LRR | Hayashi et al., 2010 |
Pik | 11 | Kusabue | NBS-LRR | Zhai et al., 2011 |
Pik-p | 11 | K60 | NBS-LRR | Yuan et al., 2011 |
Pia | 11 | Aichi Asahi | NBS-LRR | Hutin et al., 2016 |
Pi-1 | 11 | LAC (根茎稻) | NBS-LRR | Hua et al., 2012 |
Pi54rh | 11 | nrcpb 002 | NBS-LRR | Das et al., 2012 |
Pi-CO39 | 11 | CO39 (药用野生稻) | NBS-LRR | Chauhan et al., 2002 |
Pi54of | 11 | nrcpb004 | NBS-LRR | Devanna et al., 2014 |
PiK-h | 11 | K3 | NBS-LRR | Zhai et al., 2014 |
Pike | 11 | 籼早143 | NBS-LRR | Chen et al., 2015 |
Piks | 11 | 未知 | NBS-LRR | GenBank: AET36547.1 |
Pita | 12 | Yashiro-mochi | NBS-LRR | Bryan et al., 2000 |
Ptr | 12 | M2353 | 膜蛋白 | Zhao et al., 2018 |
Table 2 Cloned blast resistance genes in rice
基因 | 染色体 | 供体 | 编码蛋白 | 参考文献 |
---|---|---|---|---|
Pi37 | 1 | St. No. 1 | NBS-LRR | Lin et al., 2007 |
Pish | 1 | 日本晴 | NBS-LRR | Takahashi et al., 2010b |
Pit | 1 | K59 | NBS-LRR | Hayashi et al., 2010 |
Pi35 | 1 | Hokkai 188 | NBS-LRR | Fukuoka et al., 2014 |
Pi64 | 1 | NBS-LRR | Ma et al., 2015 | |
Pib | 2 | IR24, BL1 | NBS-LRR | Wang et al., 1999 |
Bsrd-1 | 3 | 地谷 | MYB转录因子 | Li et al., 2017 |
pi-21 | 4 | Owarihatamochi | 富含脯氨酸蛋白 | Fukuoka et al., 2009 |
Pi-63 | 4 | Kahei | NBS-LRR | Xu et al., 2014 |
Pi2 | 6 | Jefferson | NBS-LRR | Zhou et al., 2006 |
Pi9 | 6 | 75-1-127 | NBS-LRR | Qu et al., 2006 |
Piz-t | 6 | Zenith | NBS-LRR | Zhou et al., 2006 |
Pid-2 | 6 | 地谷 | 类受体激酶蛋白 | Chen et al., 2006 |
Pid-3 | 6 | 地谷 | NBS-LRR | Shang et al., 2009 |
Pi-25 | 6 | 谷梅2号 | NBS-LRR | Chen et al., 2011 |
Pid3-A4 | 6 | A4 (普通野生稻) | NBS-LRR | Lv et al., 2013 |
Pi50 | 6 | Er-Ba-zhan (EBZ) | NBS-LRR | Zhu et al., 2012 |
Pigm | 6 | 谷梅4号 | NBS-LRR | Deng et al., 2017 |
Pi-36 | 8 | Q61 | NBS-LRR | Liu et al., 2007 |
Pi-5/Pi-3/Pii | 9 | Tetep | NBS-LRR | Lee et al., 2009 |
Pii | 9 | Hitomebore | NBS-LRR | Takagi et al., 2013 |
Pi56 | 9 | 三黄占2号 | NBS-LRR | Liu et al., 2013 |
Pikh/Pi-54 | 11 | K3 | NBS-LRR | Sharma et al., 2005 |
Pik-m | 11 | Tsuyuake | NBS-LRR | Ashikawa et al., 2008 |
Pb1 | 11 | Modan | NBS-LRR | Hayashi et al., 2010 |
Pik | 11 | Kusabue | NBS-LRR | Zhai et al., 2011 |
Pik-p | 11 | K60 | NBS-LRR | Yuan et al., 2011 |
Pia | 11 | Aichi Asahi | NBS-LRR | Hutin et al., 2016 |
Pi-1 | 11 | LAC (根茎稻) | NBS-LRR | Hua et al., 2012 |
Pi54rh | 11 | nrcpb 002 | NBS-LRR | Das et al., 2012 |
Pi-CO39 | 11 | CO39 (药用野生稻) | NBS-LRR | Chauhan et al., 2002 |
Pi54of | 11 | nrcpb004 | NBS-LRR | Devanna et al., 2014 |
PiK-h | 11 | K3 | NBS-LRR | Zhai et al., 2014 |
Pike | 11 | 籼早143 | NBS-LRR | Chen et al., 2015 |
Piks | 11 | 未知 | NBS-LRR | GenBank: AET36547.1 |
Pita | 12 | Yashiro-mochi | NBS-LRR | Bryan et al., 2000 |
Ptr | 12 | M2353 | 膜蛋白 | Zhao et al., 2018 |
无毒基因 | 供体菌株 | 对应R基因 | 功能 | 编码分 泌蛋白 | 参考文献 |
---|---|---|---|---|---|
PWL1 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
PWL2 | Guy11 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Sweigard et al., 1995 |
PWL3 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
PWL4 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
Avr-CO39 | K76-79 | C039 | 功能未知, 仅在宿主细胞质中转录 | 是 | Farman and Leong, 1998 Farman et al., 2002 |
Avr-Pita | O-137 | Pi-ta | 含金属蛋白酶结构域, 作用于宿主细胞质 | 是 | Orbach et al., 2000 |
ACE1 | Guy11 | Pi-33 | 编码一个非核糖体多聚乙酰合酶, 该酶参与代谢的产物能够被Pi-33识别并激活免疫反应 | 未知 | Fudal et al., 2005 |
Avr-Pia | Ina168 | Pia | 功能未知, 作用于宿主细胞质 | 是 | Yoshida et al., 2009 |
Avr-Pii | Ina168 | Pii | 功能未知, 作用于宿主细胞质 | 是 | Yasuda et al., 2006 |
Avr-Pik/km/kp | Ina168 | Pik/km/kp | 功能未知, 作用于宿主细胞质 | 是 | Yoshida et al., 2009 |
Avr-Piz-t | 81278ZB15 | Piz-t | 功能未知蛋白, 对基础抗性具有抑制作用 | 是 | Li et al., 2009 |
Avr-Pi9 | R01-1 | Pi9 | 在水稻受到侵染时, 被转运到宿主细胞, 并且在侵染初期高表达 | 是 | Wu et al., 2015 |
Avr-Pib | CHL42 | Pib | 编码75个残基蛋白, 包括信号肽 | 是 | Zhang et al., 2015b |
Avr-Pita1 | O-137 | Pita1 | 产生16个功能蛋白 | 是 | Takahashi et al., 2010a |
AVR-Pi54 | MG-79 | Pi54 | 功能未知, 作用于宿主细胞质 | 是 | Ray et al., 2016 |
BAS1, BAS2, BAS3, BAS4 | O-137 | 未知 | 它们以不同的模式分泌到寄主细胞中, 但以相容方式互作 | 是 | Mosquera et al., 2009 |
Table 3 Cloned avirulence genes of Magnaporthe oryzae
无毒基因 | 供体菌株 | 对应R基因 | 功能 | 编码分 泌蛋白 | 参考文献 |
---|---|---|---|---|---|
PWL1 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
PWL2 | Guy11 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Sweigard et al., 1995 |
PWL3 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
PWL4 | WGG-FA40 | 未知 | 富含甘氨酸的带有信号肽的疏水蛋白 | 是 | Kang et al., 1995 |
Avr-CO39 | K76-79 | C039 | 功能未知, 仅在宿主细胞质中转录 | 是 | Farman and Leong, 1998 Farman et al., 2002 |
Avr-Pita | O-137 | Pi-ta | 含金属蛋白酶结构域, 作用于宿主细胞质 | 是 | Orbach et al., 2000 |
ACE1 | Guy11 | Pi-33 | 编码一个非核糖体多聚乙酰合酶, 该酶参与代谢的产物能够被Pi-33识别并激活免疫反应 | 未知 | Fudal et al., 2005 |
Avr-Pia | Ina168 | Pia | 功能未知, 作用于宿主细胞质 | 是 | Yoshida et al., 2009 |
Avr-Pii | Ina168 | Pii | 功能未知, 作用于宿主细胞质 | 是 | Yasuda et al., 2006 |
Avr-Pik/km/kp | Ina168 | Pik/km/kp | 功能未知, 作用于宿主细胞质 | 是 | Yoshida et al., 2009 |
Avr-Piz-t | 81278ZB15 | Piz-t | 功能未知蛋白, 对基础抗性具有抑制作用 | 是 | Li et al., 2009 |
Avr-Pi9 | R01-1 | Pi9 | 在水稻受到侵染时, 被转运到宿主细胞, 并且在侵染初期高表达 | 是 | Wu et al., 2015 |
Avr-Pib | CHL42 | Pib | 编码75个残基蛋白, 包括信号肽 | 是 | Zhang et al., 2015b |
Avr-Pita1 | O-137 | Pita1 | 产生16个功能蛋白 | 是 | Takahashi et al., 2010a |
AVR-Pi54 | MG-79 | Pi54 | 功能未知, 作用于宿主细胞质 | 是 | Ray et al., 2016 |
BAS1, BAS2, BAS3, BAS4 | O-137 | 未知 | 它们以不同的模式分泌到寄主细胞中, 但以相容方式互作 | 是 | Mosquera et al., 2009 |
[1] | 柏斌, 吴俊, 周波, 邓启云 ( 2012). 稻瘟病抗性分子育种研究综述. 杂交水稻 27, 5-9. |
[2] | 邓其明, 周鹏, 林琳, 王世全, 李双成, 李平 ( 2009). 水稻稻瘟病抗性基因研究进展及其在育种上的应用. 安徽农业科学 37, 1489-1492, 1508. |
[3] | 何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉 ( 2011). 水稻稻瘟病抗病育种研究进展与展望. 广东农业科学 38, 30-33. |
[4] | 胡朝芹, 刘剑宇, 王韵茜, 杨睿, 汪秉琨, 何月秋, 曾千春, 罗琼 ( 2017). 粳稻子预44抗LP11稻瘟病菌基因Pizy6(t)的定位. 植物学报 52, 61-69. |
[5] | 柳武革, 王丰, 刘振荣, 朱小源, 李金华, 黄慧君, 廖亦龙, 朱满山, 付崇允, 陈建伟 ( 2012). 利用分子标记技术聚合Pi-1和Pi-2基因改良三系不育系荣丰A的稻瘟病抗性. 分子植物育种 10, 575-582. |
[6] | 倪大虎, 易成新, 李莉, 汪秀峰, 张毅, 赵开军, 王春连, 章琦, 王文相, 杨剑波 ( 2008). 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系. 作物学报 34, 100-105. |
[7] | 文绍山, 高必军 ( 2012). 利用分子标记辅助选择将抗稻瘟病基因Pi-9(t)渗入水稻恢复系泸恢17. 分子植物育种 10, 42-47. |
[8] | 杨勤忠, 林菲, 冯淑杰, 王玲, 潘庆华 ( 2009). 水稻稻瘟病抗性基因的分子定位及克隆研究进展. 中国农业科学 42, 1601-1615. |
[9] | 易怒安, 李魏, 戴良英 ( 2015). 水稻抗稻瘟病基因的克隆及其分子育种研究进展. 分子植物育种 13, 1653-1659. |
[10] |
张佩胜, 赵春德, 余宁, 张迎信, 刘群恩 ( 2014). 稻瘟病抗性基因的克隆及应用研究进展. 中国稻米 20(5), 1-7.
DOI |
[11] | 张晓慧, 冯晓敏, 林少扬 ( 2017). 水稻主栽品种空育131抗稻瘟病位点的扫描及其基因组重构建. 植物学报 52, 30-42. |
[12] | Roychowdhury M, 贾育林 , Cartwright RD ( 2013). 水稻抗稻瘟病基因的结构、功能和共同进化. 作物学报 38, 381-393. |
[13] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M ( 2008). Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm -specific rice blast resistance. Genetics 180, 2267-2276. |
[14] |
Brown JKM ( 2003). A cost of disease resistance: paradigm or peculiarity? Trends Genet 19, 667-671.
DOI URL |
[15] | Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B ( 2000). A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta . Plant Cell 12, 2033-2046. |
[16] |
Cesari S ( 2018). Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219, 17-24.
DOI URL |
[17] |
Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T ( 2014). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33, 1941-1959.
DOI URL |
[18] | Césari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T ( 2013). The rice resistance protein pair RGA4/RGA5 re- cognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25, 1643-1681. |
[19] | Chauhan RS, Farman ML, Zhang HB, Leong SA ( 2002). Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics 267, 603-612. |
[20] | Chen J, Peng P, Tian JS, He YG, Zhang LP, Liu ZX, Yin DD, Zhang ZH ( 2015). Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breed 35, 117. |
[21] | Chen J, Shi YF, Liu WZ, Chai RY, Fu YP, Zhuang JY, Wu JL ( 2011). A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38, 209-216. |
[22] |
Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH ( 2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46, 794-804.
DOI URL |
[23] |
Collier SM, Moffett P ( 2009). NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14, 521-529.
DOI URL |
[24] | Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR ( 2012). A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12, 215-228. |
[25] | Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW ( 2005). The genome sequence of the rice blast fungus Magnaporthe grisea . Nature 434, 980-986. |
[26] |
Deng YW, Zhai KR, Xie Z, Yang DY, Zhu XD, Liu JZ, Wang X, Qin P, Yang YZ, Zhang GM, Li Q, Zhang JF, Wu SQ, Milazzo J, Mao BZ, Wang ET, Xie HA, Tharreau D, He ZH ( 2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965.
DOI URL |
[27] | Devanna NB, Vijayan J, Sharma TR ( 2014). The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 9, e104840. |
[28] | Dodds PN, Rathjen JP ( 2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539-548. |
[29] | Ebbole DJ ( 2007). Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol 45, 437-456. |
[30] | Ezuka A ( 1972). Field resistance of rice varieties to blast disease. Rev Plant Prot Res 5, 1-21. |
[31] | Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA ( 2002). Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant Microbe Interact 15, 6-16. |
[32] | Farman ML, Leong SA ( 1998). Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Gene- tics 150, 1049-1058. |
[33] | Fudal I, Böhnert HU, Tharreau D, Lebrun MH ( 2005). Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 42, 761-772. |
[34] | Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M ( 2000). Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1 , in rice. Breed Sci 50, 183-188. |
[35] |
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M ( 2009). Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998-1001.
DOI URL |
[36] | Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M ( 2014). Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4, 4550. |
[37] |
Hayashi K, Yoshida H, Ashikawa I ( 2006). Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113, 251-260.
DOI URL |
[38] | Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H ( 2010). Durable panicle blast- resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter th- rough local genome duplication. Plant J 64, 498-510. |
[39] | Hua LX, Wu JZ, Chen CX, Wu WH, He XY, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan QH ( 2012). The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125, 1047-1055. |
[40] |
Hutin M, Césari S, Chalvon V, Michel C, Tran TT, Boch J, Koebnik R, Szurek B, Kroj T ( 2016). Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. Plant J 88, 43-55.
DOI URL |
[41] |
Jia YL, McAdams SA, Bryan GT, Hershey HP, Valent B ( 2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19, 4004-4014.
DOI URL |
[42] |
Jiang HC, Feng YT, Bao L, Li X, Gao GJ, Zhang QL, Xiao JH, Xu CG, He YQ ( 2012a). Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30, 1679-1688.
DOI URL |
[43] | Jiang N, Li ZQ, Wu J, Wang Y, Wu LQ, Wang SH, Wang D, Wen T, Liang Y, Sun PY, Liu JL, Dai LY, Wang ZL, Wang C, Luo MZ, Liu XL, Wang GL ( 2012b). Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad- spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice 5, 29. |
[44] |
Jones JDG, Dangl JL ( 2006). The plant immune system. Nature 444, 323-329.
DOI |
[45] | Kang S, Sweigard JA, Valent B ( 1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 8, 939-948. |
[46] |
Keen NT ( 1990). Gene-for-gene complentarity in plant- pathogen interaction. Annu Rev Genet 24, 447-463.
DOI URL |
[47] |
Khan M, Subramaniam R, Desveaux D ( 2016). Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Curr Opin Microbiol 29, 49-55.
DOI URL |
[48] |
Khush GS ( 2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59, 1-6.
DOI URL |
[49] | Kiyosawa S ( 1989). Breakdown of blast resistance in rice in relation to general strategies of resistance gene deployment to prolong effectiveness of disease resistance in plants. In: Leonard KJ, Fry WE, eds. Plant Disease Epidemiology. New York: McGraw-Hill. pp. 251-283. |
[50] | Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS ( 2009). Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two Coiled- Coil-Nucleotide-Binding-Leucine-Rich repeat genes. Genetics 181, 1627-1638. |
[51] | Li JB, Li D, Sun YD, Xu MH ( 2012). Rice blast resistance gene Pi1 identified by MRG4766 marker in 173 Yunnan rice landraces. Rice Genom Genet 3, 13-18. |
[52] | Li JB, Sun YD, Liu H, Wang YY, Jia YL, Xu MH ( 2015). Natural variation of rice blast resistance gene Pi-d2 . Genet Mol Res 14, 1235-1249. |
[53] | Li W, Wang BH, Wu J, Lu GD, Hu YJ, Zhang X, Zhang ZG, Zhao Q, Feng Q, Zhang HY, Wang ZY, Wang GL, Han B, Wang ZH, Zhou B ( 2009). The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22, 411-420. |
[54] |
Li WT, Zhu ZW, Chern M, Yin JJ, Yang C, Ran L, Cheng MP, He M, Wang K, Wang J, Zhou XG, Zhu XB, Chen ZX, Wang JC, Zhao W, Ma BT, Qin P, Chen WL, Wang YP, Liu JL, Wang WM, Wu XJ, Li P, Wang JR, Zhu LH, Li SG, Chen XW ( 2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114-126.
DOI URL |
[55] | Lin F, Chen S, Que ZQ, Wang L, Liu XQ, Pan QH ( 2007). The blast resistance gene Pi37 encodes a Nucleotide Binding Site-Leucine-Rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177, 1871-1880. |
[56] | Liu XQ, Lin F, Wang L, Pan Q ( 2007). The in Silico map- based cloning of Pi36, a rice Coiled-Coil-Nucleotide- Binding Site-Leucine-Rich Repeat gene that confers race-specific resistance to the blast fungus. Genetics 176, 2541-2549. |
[57] | Liu Y, Liu B, Zhu XY, Yang JY, Bordeos A, Wang GL, Leach JE, Leung H ( 2013). Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet 126, 985-998. |
[58] | Liu YL, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP ( 2002). Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14, 1483-1496. |
[59] | Lv QM, Xu X, Shang JJ, Jiang GH, Pang ZQ, Zhou ZZ, Wang J, Liu Y, Li T, Li XB, Xu JC, Cheng ZK, Zhao XF, Li SG, Zhu LH ( 2013). Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103, 594-599. |
[60] | Ma J, Lei CL, Xu XT, Hao K, Wang JL, Cheng ZJ, Ma XD, Ma J, Zhou KN, Zhang X, Guo XP, Wu FQ, Lin QB, Wang CM, Zhai HQ, Wang HY, Wan JM ( 2015). Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact 28, 558-568. |
[61] | Mosquera G, Giraldo MC, Hyun Khang C, Coughlan S, Valent B ( 2009). Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as Biotrophy-Associated secreted proteins in rice blast disease. Plant Cell 21, 1273-1290. |
[62] |
Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai LT, Chen HM, He YJ, European Union Effectoromics Consortium, Vandenhaute J, Roth FP, Hill DE, Ecker R, Vidal M, Beynon J, Braun P, Dangl JL ( 2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333, 596-601.
DOI URL |
[63] | Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P ( 2018). Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19, 21-33. |
[64] | Nguyen TTT, Koizumi S, La TN, Zenbayashi KS, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A ( 2006). Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet 113, 697-704. |
[65] | Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B ( 2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta . Plant Cell 12, 2019-2032. |
[66] | Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T ( 2017). Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29, 156-168. |
[67] | Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL ( 2006). The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172, 1901-1914. |
[68] | Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR ( 2016). Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci 7, 1140. |
[69] | Shang JJ, Tao Y, Chen XW, Zou Y, Lei CL, Wang J, Li XB, Zhao XF, Zhang MJ, Lu ZK, Xu JC, Cheng ZK, Wan JM, Zhu LH ( 2009). Identification of a new rice blast resistance gene, Pid3 , by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseu- dogene alleles between the two sequenced rice genomes. Genetics 182, 1303-1311. |
[70] | Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK ( 2005). High-resolution mapping, cloning and molecular characterization of the Pi-k h gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Geno- mics 274, 569-578. |
[71] | Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B ( 1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7, 1221-1233. |
[72] | Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mit- suoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R ( 2013). MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200, 276-283. |
[73] | Takahashi M, Ashizawa T, Hirayae K, Moriwaki J, Sone T, Sonoda R, Noguchi MT, Nagashima S, Ishikawa K, Arai M ( 2010a). One of two major paralogs of AVR-Pita1 is functional in Japanese rice blast isolates. Phytopathology 100, 612-618. |
[74] | Takahashi A, Hayashi N, Miyao A, Hirochika H ( 2010b). Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10, 175. |
[75] |
Takahashi JS, Pinto LH, Vitaterna MH ( 1994). Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724-1733.
DOI URL |
[76] |
Van der Hoorn RA, Kamoun S ( 2008). From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
DOI URL |
[77] | Wang BH, Ebbole DJ, Wang ZH ( 2017). The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric 16, 2746-2760. |
[78] | Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ ( 1994). RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136, 1421-1434. |
[79] |
Wang J, Zhou LA, Shi H, Chern M, Yu H, Yi H, He M, Yin JJ, Zhu XB, Li Y, Li WT, Liu JL, Wang JC, Chen XQ, Qing H, Wang YP, Liu GF, Wang WM, Li P, Wu XJ, Zhu LH, Zhou JM, Ronald PC, Li SG, Li JY, Chen XW ( 2018). A single transcription factor promotes both yield and immunity in rice. Science 361, 1026-1028.
DOI URL |
[80] |
Wang RY, Ning YS, Shi XT, He F, Zhang CY, Fan JB, Jiang N, Zhang Y, Zhang T, Hu YJ, Bellizzi M, Wang GL ( 2016). Immunity to rice blast disease by suppression of effector-triggered necrosis. Curr Biol 26, 2399-2411.
DOI URL |
[81] | Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R ( 2013). The rpg4-mediated resistance to wheat stem rust( Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant Microbe Interact 26, 407-418. |
[82] | Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T ( 1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19, 55-64. |
[83] | Wu J, Kou YJ, Bao JD, Li Y, Tang MZ, Zhu XL, Ponaya A, Xiao G, Li JB, Li CY, Song MY, Cumagun CJR, Deng QY, Lu GD, Jeon JS, Naqvi NI, Zhou B ( 2015). Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol 206, 1463-1475. |
[84] | Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ ( 2014). Rice blast resistance gene Pikahei-1( t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed 34, 691-700. |
[85] |
Xu YB, McCouch SR, Zhang QF ( 2005). How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59, 7-26.
DOI URL |
[86] | Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujita Y ( 2015). Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Dis 99, 904-909. |
[87] | Yasuda N, Noguchi MT, Fujita Y ( 2006). Partial mapping of avirulence genes AVR-Pii and AVR-Pia in the rice blast fun- gus Magnaporthe oryzae. Can J Plant Pathol 28, 494-498. |
[88] | Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R ( 2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae . Plant Cell 21, 1573-1591. |
[89] | Yu ZH, Mackill DJ, Bonman JM, McCouch SR, Guiderdoni E, Notteghem JL, Tanksley SD ( 1996). Molecular mapping of genes for resistance to rice blast ( Pyricularia grisea Sacc.). Theor Appl Genet 93, 859-863. |
[90] | Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH ( 2011). The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122, 1017-1028. |
[91] | Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S ( 2007). Genetic and physical mapping of the partial resistance gene, Pi34 , to blast in rice. Phytopathology 97, 598-602. |
[92] | Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH ( 2011). The isolation and characterization of Pik , a rice blast resistance gene which emerged after rice domestication. New Phytol 189, 321-334. |
[93] | Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong ZQ, Wang L, Pan QH ( 2014). Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9, e98067. |
[94] | Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, Crous PW, Dean R, de Vries RP, Donofrio N, Hyde KD, Lebrun MH, Talbot NJ, Tharreau D, Tosa Y, Valent B, Wang ZH, Xu JR ( 2016). Generic names in Magnaporthales . IMA Fungus 7, 155-159. |
[95] | Zhang XH, Yang SH, Wang J, Jia YX, Huang J, Tan SJ, Zhong Y, Wang L, Gu LJ, Chen JQ, Pan QH, Bergelson J, Tian DC ( 2015a). A genome-wide survey reveals abundant rice blast R genes in resistant cultivars. Plant J 84, 20-28. |
[96] | Zhang SL, Wang L, Wu WH, He LY, Yang XF, Pan QH ( 2015b). Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci Rep 5, 11642. |
[97] | Zhao HJ, Wang XY, Jia YL, Minkenberg B, Wheatley M, Fan JB, Jia MH, Famoso A, Edwards JD, Wamishe Y, Valent B, Wang GL, Yang YN ( 2018). The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9, 2039. |
[98] | Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL ( 2006). The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea . Mol Plant Microbe Interact 19, 1216-1228. |
[99] |
Zhou JM, Chai JJ ( 2008). Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11, 179-185.
DOI URL |
[100] | Zhu XY, Chen S, Yang JY, Zhou SC, Zeng LX, Han JL, Su J, Wang L, Pan QH ( 2012). The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124, 1295-1304. |
[1] | Lumei He, Bojun Ma, Xifeng Chen. Advances on the Executor Resistance Genes in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | CHENG Ke-Xin, DU Yao, LI Kai-Hang, WANG Hao-Chen, YANG Yan, JIN Yi, HE Xiao-Qing. Genetic mechanism of interaction between maize and phyllospheric microbiome [J]. Chin J Plant Ecol, 2024, 48(2): 215-228. |
[3] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[4] | Qiwei Jia, Qianqian Zhong, Yujia Gu, Tianqi Lu, Wei Li, Shuai Yang, Chaoyu Zhu, Chengxiang Hu, Sanfeng Li, Yuexing Wang, Yuchun Rao. Mapping of QTL for Cell Wall Related Components in Rice Stem and Analysis of Candidate Genes [J]. Chinese Bulletin of Botany, 2023, 58(6): 882-892. |
[5] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[6] | Jiayi Jin, Yiting Luo, Huimin Yang, Tao Lu, Hanfei Ye, Jiyi Xie, Kexin Wang, Qianyu Chen, Yuan Fang, Yuexing Wang, Yuchun Rao. QTL Mapping and Expression Analysis on Candidate Genes Related to Chlorophyll Content in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 394-403. |
[7] | Weijun Ye, Yin Zhang, Peiran Wang, Lingling Zhang, Dongfeng Tian, Zejiang Wu, Bin Zhou. QTLs Analysis for Five Yield-related Traits in Mungbean [J]. Chinese Bulletin of Botany, 2023, 58(1): 150-158. |
[8] | Wei Heping, Lu Tao, Jia Qiwei, Deng Fei, Zhu Hao, Qi Zehua, Wang Yuxi, Ye Hanfei, Yin Wenjing, Fang Yuan, Mu Dan, Rao Yuchun. QTL Mapping of Candidate Genes for Heading Date in Rice [J]. Chinese Bulletin of Botany, 2022, 57(5): 588-595. |
[9] | Kairu Yang, Qiwei Jia, Jiayi Jin, Hanfei Ye, Sheng Wang, Qianyu Chen, Yian Guan, Chenyang Pan, Dedong Xin, Yuan Fang, Yuexing Wang, Yuchun Rao. Cloning and Functional Analysis of Rice Yellow Green Leaf Regulatory Gene YGL18 [J]. Chinese Bulletin of Botany, 2022, 57(3): 276-287. |
[10] | Hanfei Ye, Wenjing Yin, Yian Guan, Kairu Yang, Qianyu Chen, Shuying Yu, Xudong Zhu, Dedong Xin, Wei Zhang, Yuexing Wang, Yuchun Rao. QTL Mapping and Candidate Gene Analysis of Vitamin E in Rice Grain [J]. Chinese Bulletin of Botany, 2022, 57(2): 157-170. |
[11] | Xia Wang, Wei Yan, Zhiqin Zhou, Zhenyi Chang, Minting Zheng, Xiaoyan Tang, Jianxin Wu. Identification and Mapping of a Rice Male Sterility Mutant ms102 [J]. Chinese Bulletin of Botany, 2022, 57(1): 42-55. |
[12] | JIA Ning-Xia, GUO Ke, SONG Chuang-Ye, LIU Chang-Cheng. Principles of color and symbol design for vegetation mapping and a scheme of national vegetation map legends [J]. Chin J Plant Ecol, 2021, 45(8): 809-817. |
[13] | Jiangyuan Shang, Yan Chun, Xueyong Li. Map-based Cloning and Natural Variation Analysis of the PAL3 Gene Controlling Panicle Length in Rice [J]. Chinese Bulletin of Botany, 2021, 56(5): 520-532. |
[14] | Wenjia Hu, Qiulin Zhou, Bin Chen, Shengyun Yang, Jiamei Xiao, Jianguo Du, Hao Huang, Weiwei Yu, Zhiyuan Ma. Progress in marine habitat mapping: Concept, methods, and applications [J]. Biodiv Sci, 2021, 29(4): 531-544. |
[15] | Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential [J]. Chinese Bulletin of Botany, 2021, 56(3): 275-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||