植物学报 ›› 2021, Vol. 56 ›› Issue (4): 451-461.DOI: 10.11983/CBB20205
收稿日期:
2020-12-19
接受日期:
2021-05-07
出版日期:
2021-07-01
发布日期:
2021-06-30
通讯作者:
欧静
作者简介:
*E-mail: coloroj@126.com基金资助:
Qian Luo, Yansha Zhang, Jing Ou*()
Received:
2020-12-19
Accepted:
2021-05-07
Online:
2021-07-01
Published:
2021-06-30
Contact:
Jing Ou
摘要: 为建立郁金樱(Cerasus serrulata var. lannesiana cv. ‘Grandiflora’)再生体系, 以多年生母株小叶、一年生嫁接苗小叶、腋芽诱导小叶和增殖一代小叶为外植体, 探讨不同外植体和植物激素组合对郁金樱愈伤组织诱导、不定芽分化、增殖和生根的影响。结果表明, 4种外植体均可诱导出愈伤组织, 除多年生母株小叶外皆分化出不定芽, 外植体幼化程度越高, 后期培养潜力越大。以增殖一代小叶为外植体效果最佳, 其最适愈伤组织诱导培养基为MS+0.5 mg·L-16-BA+1.0 mg·L-12,4-D, 诱导率达96.22%; 最佳分化培养基为MS+1.0 mg·L-16-BA+0.1 mg·L-12,4-D+0.1 mg·L-1TDZ, 分化率达78.14%; 最佳增殖培养基为MS+1.0 mg·L-16-BA, 增殖系数可达7.85; 最佳生根培养基为不含任何激素的1/2MS培养基, 生根率达100%。不同外植体获得的再生植株移栽成活后生长差异显著, 以增殖一代小叶诱导的再生植株长势最佳。
罗钱, 张燕莎, 欧静. 郁金樱愈伤组织诱导及植株再生. 植物学报, 2021, 56(4): 451-461.
Qian Luo, Yansha Zhang, Jing Ou. Callus Induction and Plant Regeneration of Cerasus serrulata var. lannesiana cv. ‘Grandiflora’. Chinese Bulletin of Botany, 2021, 56(4): 451-461.
Concentrations of plant hormones (mg·L-1) | Treatment code | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6-BA | 0.5 | 0.5 | 0.5 | 1 | 1 | 1 | 2 | 2 | 2 |
2,4-D | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 |
TDZ | 0.01 | 0.1 | 0.5 | 0.1 | 0.5 | 0.01 | 0.5 | 0.01 | 0.1 |
表1 郁金樱愈伤组织分化不同植物激素正交设计
Table 1 Orthogonal design of different plant hormones in callus differentiation of Cerasus serrulata
Concentrations of plant hormones (mg·L-1) | Treatment code | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6-BA | 0.5 | 0.5 | 0.5 | 1 | 1 | 1 | 2 | 2 | 2 |
2,4-D | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 |
TDZ | 0.01 | 0.1 | 0.5 | 0.1 | 0.5 | 0.01 | 0.5 | 0.01 | 0.1 |
图1 郁金樱不同外植体愈伤组织的平均诱导率 不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 1 Average callus induction rates in different explants of Cerasus serrulata Different lowercase letters indicate significant differences among different treatments (P<0.05).
图2 郁金樱愈伤组织诱导、分化及增殖 (A) 腋芽诱导小叶; (B1)-(B3) 多年生母株小叶愈伤组织诱导及分化; (C1)-(C7) 一年生嫁接苗小叶愈伤组织诱导、不定芽分化及增殖过程; (D1)-(D7) 腋芽诱导小叶的愈伤组织诱导、不定芽分化及增殖过程; (E1)-(E7) 增殖一代小叶的愈伤组织诱导、不定芽分化及增殖过程。Bars=1 cm
Figure 2 Callus induction, differentiation and proliferation of Cerasus serrulata (A) Axillary buds induce leaflets; (B1)-(B3) Leaflet callus induction and differentiation of perennial mother plant; (C1)-(C7) Leaflet callus induction, adventitious bud differentiation and proliferation of one-year grafted seedlings; (D1)-(D7) The process of callus induction, adventitious bud differentiation and proliferation induced from axillary buds; (E1)-(E7) The process of callus induction, adventitious bud differentiation and proliferation of the proliferative generation of leaflets. Bars=1 cm
No. | 6-BA (mg·L-1) | 2,4-D (mg·L-1) | Callus induction rate (%) | |||
---|---|---|---|---|---|---|
Leaflet of perennial mother plant | Annual grafted seedling leaflet | Axillary buds induce leaflets | Proliferate one generation of leaflets | |||
1 | 0 | 0.5 | 0 l | 42.87±1.51 i | 66.09±0.72 g | 66.51±0.33 i |
2 | 0 | 1.0 | 23.91±0.51 j | 49.32±1.01 h | 68.46±1.00 ef | 72.86±0.59 g |
3 | 0 | 1.5 | 46.28±0.58 h | 58.92±0.72 f | 67.64±0.80 f | 76.23±0.96 ef |
4 | 0 | 2.0 | 57.35±0.68 e | 68.63±0.60 d | 72.52±1.16 d | 80.77±0.59 d |
5 | 0 | 3.0 | 57.15±0.32 e | 61.31±1.34 e | 69.61±0.67 e | 77.63±0.71 e |
6 | 0.5 | 0.5 | 16.68±1.45 k | 55.08±0.82 g | 63.67±0.54 h | 71.12±0.20 h |
7 | 0.5 | 1.0 | 60.09±0.98 d | 61.43±1.40 e | 69.04±0.70 ef | 96.22±0.94 a |
8 | 0.5 | 1.5 | 49.31±0.70 g | 74.11±0.78 c | 83.07±0.73 c | 94.63±0.42 b |
9 | 0.5 | 2.0 | 68.55±1.04 a | 80.71±0.49 a | 88.74±0.45 a | 91.40±0.80 c |
10 | 0.5 | 3.0 | 62.52±1.09 c | 77.62±1.11 b | 86.17±0.72 b | 77.05±0.77 ef |
11 | 1 | 0.5 | 27.85±0.69 i | 62.06±0.73 e | 68.09±0.23 f | 76.63±0.82 ef |
12 | 1 | 1.0 | 45.64±0.99 h | 69.25±0.42 d | 73.28±0.64 d | 81.36±1.09 d |
13 | 1 | 1.5 | 51.03±1.17 f | 73.81±0.92 c | 83.64±1.06 c | 92.18±2.00 c |
14 | 1 | 2.0 | 65.46±0.61 b | 60.95±0.30 e | 67.87±0.98 f | 75.57±0.90 f |
15 | 1 | 3.0 | 59.89±1.22 d | 54.64±1.00 g | 65.07±0.82 f | 73.85±0.63 g |
表2 不同激素组合及外植体对郁金樱愈伤组织诱导的影响(平均值±标准误)
Table 2 Effects of different hormone combinations and explants on Cerasus serrulata callus induction (means±SE)
No. | 6-BA (mg·L-1) | 2,4-D (mg·L-1) | Callus induction rate (%) | |||
---|---|---|---|---|---|---|
Leaflet of perennial mother plant | Annual grafted seedling leaflet | Axillary buds induce leaflets | Proliferate one generation of leaflets | |||
1 | 0 | 0.5 | 0 l | 42.87±1.51 i | 66.09±0.72 g | 66.51±0.33 i |
2 | 0 | 1.0 | 23.91±0.51 j | 49.32±1.01 h | 68.46±1.00 ef | 72.86±0.59 g |
3 | 0 | 1.5 | 46.28±0.58 h | 58.92±0.72 f | 67.64±0.80 f | 76.23±0.96 ef |
4 | 0 | 2.0 | 57.35±0.68 e | 68.63±0.60 d | 72.52±1.16 d | 80.77±0.59 d |
5 | 0 | 3.0 | 57.15±0.32 e | 61.31±1.34 e | 69.61±0.67 e | 77.63±0.71 e |
6 | 0.5 | 0.5 | 16.68±1.45 k | 55.08±0.82 g | 63.67±0.54 h | 71.12±0.20 h |
7 | 0.5 | 1.0 | 60.09±0.98 d | 61.43±1.40 e | 69.04±0.70 ef | 96.22±0.94 a |
8 | 0.5 | 1.5 | 49.31±0.70 g | 74.11±0.78 c | 83.07±0.73 c | 94.63±0.42 b |
9 | 0.5 | 2.0 | 68.55±1.04 a | 80.71±0.49 a | 88.74±0.45 a | 91.40±0.80 c |
10 | 0.5 | 3.0 | 62.52±1.09 c | 77.62±1.11 b | 86.17±0.72 b | 77.05±0.77 ef |
11 | 1 | 0.5 | 27.85±0.69 i | 62.06±0.73 e | 68.09±0.23 f | 76.63±0.82 ef |
12 | 1 | 1.0 | 45.64±0.99 h | 69.25±0.42 d | 73.28±0.64 d | 81.36±1.09 d |
13 | 1 | 1.5 | 51.03±1.17 f | 73.81±0.92 c | 83.64±1.06 c | 92.18±2.00 c |
14 | 1 | 2.0 | 65.46±0.61 b | 60.95±0.30 e | 67.87±0.98 f | 75.57±0.90 f |
15 | 1 | 3.0 | 59.89±1.22 d | 54.64±1.00 g | 65.07±0.82 f | 73.85±0.63 g |
图3 不同植物激素对郁金樱不同外植体愈伤组织分化的影响 分化培养基编号1-9同表1。不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 3 Effects of different plant hormones on Cerasus serrulata callus differentiation in different explants Differentiation medium No. 1-9 are the same as Table 1. Different lowercase letters indicate significant differences at P<0.05 among different treatments.
Different explants | Source | df | Sum of squares | Mean square | F | P |
---|---|---|---|---|---|---|
Annual grafted seedling leaflet | 6-BA | 2 | 2622.375 | 1311.187 | 77.591 | 0.000** |
2,4-D | 2 | 57.819 | 28.910 | 1.711 | 0.206 | |
TDZ | 2 | 128.789 | 64.394 | 3.811 | 0.040* | |
Error | 20 | 337.975 | 16.899 | - | - | |
Sun | 27 | 13723.723 | - | - | - | |
Axillary buds induce leaflets | 6-BA | 2 | 1476.646 | 738.323 | 42.619 | 0.000** |
2,4-D | 2 | 144.656 | 72.328 | 4.175 | 0.031* | |
TDZ | 2 | 19.924 | 9.962 | 0.575 | 0.572 | |
Error | 20 | 346.474 | 17.324 | - | - | |
Sun | 27 | 29649.142 | - | - | - | |
Proliferate one generation of leaflets | 6-BA | 2 | 3360.867 | 1680.433 | 29.026 | 0.000** |
2,4-D | 2 | 600.965 | 300.483 | 5.19 | 0.015* | |
TDZ | 2 | 182.009 | 91.005 | 1.572 | 0.232 | |
Error | 20 | 1157.866 | 57.893 | - | - | |
Sun | 27 | 79113.749 | - | - | - |
表3 不同植物激素对郁金樱不同外植体愈伤组织分化的方差分析
Table 3 Variance analysis of Cerasus serrulata callus differentiation of different explants with different plant hormones
Different explants | Source | df | Sum of squares | Mean square | F | P |
---|---|---|---|---|---|---|
Annual grafted seedling leaflet | 6-BA | 2 | 2622.375 | 1311.187 | 77.591 | 0.000** |
2,4-D | 2 | 57.819 | 28.910 | 1.711 | 0.206 | |
TDZ | 2 | 128.789 | 64.394 | 3.811 | 0.040* | |
Error | 20 | 337.975 | 16.899 | - | - | |
Sun | 27 | 13723.723 | - | - | - | |
Axillary buds induce leaflets | 6-BA | 2 | 1476.646 | 738.323 | 42.619 | 0.000** |
2,4-D | 2 | 144.656 | 72.328 | 4.175 | 0.031* | |
TDZ | 2 | 19.924 | 9.962 | 0.575 | 0.572 | |
Error | 20 | 346.474 | 17.324 | - | - | |
Sun | 27 | 29649.142 | - | - | - | |
Proliferate one generation of leaflets | 6-BA | 2 | 3360.867 | 1680.433 | 29.026 | 0.000** |
2,4-D | 2 | 600.965 | 300.483 | 5.19 | 0.015* | |
TDZ | 2 | 182.009 | 91.005 | 1.572 | 0.232 | |
Error | 20 | 1157.866 | 57.893 | - | - | |
Sun | 27 | 79113.749 | - | - | - |
No. | 6-BA (mg·L-1) | NAA (mg·L-1) | Proliferation coefficient | ||
---|---|---|---|---|---|
Annual grafted seedling leaflets | Axillary buds induce leaflets | Proliferate one generation of leaflets | |||
1 | 0.5 | 0 | 0 e | 2.42±0.04 g | 3.32±0.46 e |
2 | 0.5 | 0.1 | 0.88±0.77 d | 3.52±0.07 f | 2.70±0.24 f |
3 | 0.5 | 0.5 | 2.17±0.27 c | 2.39±0.05 g | 2.91±0.29 ef |
4 | 1 | 0 | 2.38±0.04 c | 4.46±0.12 e | 7.85±0.33 a |
5 | 1 | 0.1 | 2.17±0.62 c | 4.99±0.11 c | 5.57±0.20 cd |
6 | 1 | 0.5 | 3.13±0.05 ab | 4.64±0.08 d | 6.30±0.14 b |
7 | 2 | 0 | 2.61±0.07 bc | 5.39±0.05 a | 5.26±0.27 d |
8 | 2 | 0.1 | 3.07±0.06 b | 5.18±0.19 b | 5.82±0.19 c |
9 | 2 | 0.5 | 3.53±0.04 a | 4.73±0.08 d | 3.38±0.15 e |
Average | 2.22±1.12 C | 4.19±1.10 B | 4.79±1.73 A |
表4 不同植物激素对郁金樱外植体不定芽增殖的影响(平均值±标准误)
Table 4 Effects of different plant hormones on Cerasus serrulata adventitious bud proliferation of different explants (means±SE)
No. | 6-BA (mg·L-1) | NAA (mg·L-1) | Proliferation coefficient | ||
---|---|---|---|---|---|
Annual grafted seedling leaflets | Axillary buds induce leaflets | Proliferate one generation of leaflets | |||
1 | 0.5 | 0 | 0 e | 2.42±0.04 g | 3.32±0.46 e |
2 | 0.5 | 0.1 | 0.88±0.77 d | 3.52±0.07 f | 2.70±0.24 f |
3 | 0.5 | 0.5 | 2.17±0.27 c | 2.39±0.05 g | 2.91±0.29 ef |
4 | 1 | 0 | 2.38±0.04 c | 4.46±0.12 e | 7.85±0.33 a |
5 | 1 | 0.1 | 2.17±0.62 c | 4.99±0.11 c | 5.57±0.20 cd |
6 | 1 | 0.5 | 3.13±0.05 ab | 4.64±0.08 d | 6.30±0.14 b |
7 | 2 | 0 | 2.61±0.07 bc | 5.39±0.05 a | 5.26±0.27 d |
8 | 2 | 0.1 | 3.07±0.06 b | 5.18±0.19 b | 5.82±0.19 c |
9 | 2 | 0.5 | 3.53±0.04 a | 4.73±0.08 d | 3.38±0.15 e |
Average | 2.22±1.12 C | 4.19±1.10 B | 4.79±1.73 A |
IBA (mg·L-1) | NAA (mg·L-1) | Rooting rate (%) | Number of roots (strips) |
---|---|---|---|
0 | 0 | 100 a | 12.82±0.54 a |
0 | 0.5 | 86.72±1.62 b | 9.24±1.24 b |
0 | 1 | 0 e | 0 e |
0.5 | 0 | 68.32±2.95 c | 5.64±0.26 c |
0.5 | 0.5 | 44.09±1.74 d | 3.24±0.48 d |
表5 不同植物激素对郁金樱生根的影响(平均值±标准误)
Table 5 Effects of plant hormones on rooting of Cerasus serrulata (means±SE)
IBA (mg·L-1) | NAA (mg·L-1) | Rooting rate (%) | Number of roots (strips) |
---|---|---|---|
0 | 0 | 100 a | 12.82±0.54 a |
0 | 0.5 | 86.72±1.62 b | 9.24±1.24 b |
0 | 1 | 0 e | 0 e |
0.5 | 0 | 68.32±2.95 c | 5.64±0.26 c |
0.5 | 0.5 | 44.09±1.74 d | 3.24±0.48 d |
图4 郁金樱不同外植体诱导再生植株生根及移载 (A) 不定根原始体突起; (B) 肉质主根; (C) 主根上长出侧根; (D) 直接长出须根; (E)-(G) 一年生嫁接苗小叶植株再生、生根及移栽; (H)-(J) 腋芽诱导小叶再生植株生根及移栽; (K)-(M) 增殖一代小叶再生植株生根及移栽。Bars=2 cm
Figure 4 Rooting and transplantation of regenerated plants induced by different explants of Cerasus serrulata (A) Adventitious roots protuberant; (B) Fleshy taproots; (C) Lateral roots on the taproot; (D) Directly grow fibrous roots; (E)-(G) Leaflet regeneration of annual grafted seedlings, rooting and transplanting; (H)-(J) The axillary buds induced the rooting and transplanting of regenerated leaflets; (K)-(M) Proliferation of a generation of regenerated leaflets, rooting and transplanting. Bars=2 cm
[1] | 陈雪, 张金柱, 潘兵兵, 桑成瑾, 马雪, 杨涛, 车代弟 (2011). 月季愈伤组织的诱导及植株再生. 植物学报 46, 569-574. |
[2] | 房洪舟, 鲁敏, 安华明 (2019). 刺梨叶片愈伤组织培养体系建立及其主要活性物质分析. 植物生理学报 55, 1147-1155. |
[3] | 郭希梅, 丛日晨, 张常青, 古润泽, 高俊平 (2011). 古油松衰弱衰老诊断的生理指标. 林业科学 47(4), 43-48. |
[4] | 和凤美, 李璇, 邵琬珊, 朱永平, 杨晓红 (2010). 冬樱花愈伤组织诱导和抑制褐化初探. 中国农学通报 26(12), 130-134. |
[5] | 黄守印, 池井存, 苏淑欣, 尚文艳, 任艳平 (2003). 雾灵山地区野生樱花的组织培养与快速繁殖. 植物生理学通讯 (3), 228. |
[6] | 蒋冬月, 邹宜含, 柳新红, 程亚平, 王平, 沈鑫 (2019). 樱花粉红及黄绿色系品种苗期生长特性及适应性. 江西农业大学学报 41, 673-682. |
[7] | 雷巾茗 (2020). 樱花组培快繁与扦插繁殖研究. 硕士论文. 北京: 北京林业大学. pp. 1-92. |
[8] | 李水根, 李秀芬, 殷丽青, 高晨, 朱建军 (2020). 喜马拉雅樱花嫩茎离体快繁体系优化. 分子植物育种 18, 8217-8222. |
[9] | 李艳敏, 孟月娥, 张玉, 赵秀山, 王利民, 王慧娟 (2012). 新优彩叶植物红叶樱花外植体采集及离体培养技术研究. 河南农业科学 41(9), 127-130, 142. |
[10] | 李艳敏, 孟月娥, 赵秀山, 王慧娟, 张强, 王利民 (2008). ‘红叶樱花’的组织培养和快速繁殖. 植物生理学通讯 44, 1163-1164. |
[11] | 刘莉莉, 卢淑波, 徐佳萍, 张庆田, 李昌禹 (2015). 以黄花乌头发根为外植体的再生培养体系建立. 植物学报 50, 623-627. |
[12] | 刘晓莉 (2012). 14个樱花品种观赏性状综合评价和樱花园林应用研究. 硕士论文. 杭州: 浙江农林大学. pp. 1-89. |
[13] | 吕月良, 陈璋, 施季森, 黄宇翔, 刘金燕, 谢建丽 (2006). 福建山樱花不定芽诱导和植株再生规模化繁殖试验. 南京林业大学学报(自然科学版) (3), 105-108. |
[14] | 任如意, 薛巨坤, 国会艳, 魏继承 (2017). 北玄参毛状根诱导及其植株再生. 植物学报 52, 783-787. |
[15] | 史港影, 南程慧, 伊贤贵, 张开文, 王贤荣 (2014). 雪落樱再生体系的建立. 南京林业大学学报(自然科学版) 38, 20-24. |
[16] | 宋斯妤 (2018). 迎春樱和华中樱优良品系组培快繁技术的研究. 硕士论文. 杭州: 浙江农林大学. pp. 1-62. |
[17] | 徐晨捷, 欧静 (2020). 染井吉野樱的茎段培养与胚培养比较. 北方园艺 (23), 65-71. |
[18] | 闫国华, 周宇, 张晓明, 张开春 (2002). 植物离体培养中的顽拗现象及其生理和遗传基础. 植物生理学通讯 38, 481-486. |
[19] |
燕丽萍, 李丽, 刘翠兰, 吴德军, 王因花, 任飞, 赵梁军 (2016). 绒毛白蜡体胚诱导和植株再生. 植物学报 51, 807-816.
DOI |
[20] | 杨小燕, 欧静, 张凤泉, 翁钰舟, 于瀚, 曹时波 (2019). 贵阳市樱花资源及其园林应用研究. 山地农业生物学报 38(6), 14-20. |
[21] | 于波, 黄丽丽, 朱玉, 朱根发, 孙映波 (2020). 朱顶红幼嫩花梗胚性愈伤组织诱导和高效植株再生. 园艺学报 47, 907-915. |
[22] | 张灵灵, 蒋细旺 (2015). 2个日本晚樱品种组织培养和快繁技术研究. 西南林业大学学报 35(4), 27-32. |
[23] | 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷 (2018). 欧洲百合愈伤组织诱导及植株再生体系的建立. 植物学报 53, 840-847. |
[24] | 朱继军, 奉树成, 陈必胜 (2015). 晚樱花品种的引种与筛选. 中国园艺文摘 31(5), 1-3, 24. |
[25] | 邹娜, 陈璋, 林思祖, 林庆良 (2013). 福建山樱花愈伤组织的诱导及植株再生. 核农学报 27, 1417-1423. |
[26] |
Bartos PMC, Gomes HT, do Amaral LIV, Teixeira JB, Scherwinski-Pereira JE (2018). Biochemical events during somatic embryogenesis in Coffea arabica L. 3 Biotech 8, 209.
DOI URL |
[27] |
Ben Mahmoud K, Jedidi E, Delporte F, Muhovski Y, Jemmali A, Druart P (2017). Molecular investigations of the somatic embryogenesis recalcitrance in the cherry ( Prunus cerasus L.) rootstock CAB 6P. Turk J Biol 41, 158-165.
DOI URL |
[28] |
Bernula D, Benkő P, Kaszler N, Domonkos I, Szőllősi R, Ferenc G, Ayaydin F, Fehér A, Gémes K (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140, 327-339.
DOI URL |
[29] | Chen BH, Li JM, Zhang J, Wu ZX, Fan HH, Li QZ (2016). Optimizing the rapid technique for propagation of Cerasus campanulata by tissue culture. Pak J Bot 48, 305-309. |
[30] |
Correia S, Lopes ML, Canhoto JM (2011). Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 25, 1009-1020.
DOI URL |
[31] |
Díaz-Sala C (2019). Molecular dissection of the regenerative capacity of forest tree species: special focus on conifers. Front Plant Sci 9, 1943.
DOI URL |
[32] |
Hu RY, Sun YH, Wu B, Duan HJ, Zheng HQ, Hu DL, Lin HZ, Tong ZK, Xu JL, Li Y (2017). Somatic embryogenesis of immature Cunninghamia lanceolata (Lamb.) hook zygotic embryos. Sci Rep 7, 56.
DOI URL |
[33] |
Martínez MT, San José MC, Vieitez AM, Cernadas MJ, Ballester A, Corredoira E (2017). Propagation of mature Quercus ilex L. (holm oak) trees by somatic embryogenesis. Plant Cell Tissue Organ Cult 131, 321-333.
DOI URL |
[34] |
McCown BH (2000). Special symposium: in vitro plant recalcitrance recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell Dev Biol Plant 36, 149-154.
DOI URL |
[35] |
Ming NJ, Mostafiz SB, Johon NS, Zulkifli NSA, Wagiran A (2019). Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected Malaysian rice cultivar. Plants 8, 144.
DOI URL |
[36] |
Singh R, Rai MK, Kumari N (2015). Somatic embryogenesis and plant regeneration in Sapindus mukorossi gaertn. from leaf-derived callus induced with 6-benzylaminopurine. Appl Biochem Biotechnol 177, 498-510.
DOI URL |
[37] |
Wu GY, Wei XL, Wang X, Wei Y (2020). Induction of somatic embryogenesis in different explants from Ormosia henryi Prain. Plant Cell Tissue Organ Cult 142, 229-240.
DOI URL |
[38] |
Wu H, Chen BJ, Fiers M, Wróbel-Marek J, Kodde J, Groot SPC, Angenent G, Feng H, Bentsink L, Boutilier K (2019). Seed maturation and post-harvest ripening negatively affect Arabidopsis somatic embryogenesis. Plant Cell Tissue Organ Cult 139, 17-27.
DOI URL |
[1] | 田旭平, 岳康杰, 王佳丽, 刘慧欣, 史子尹, 亢红伟. 毛建草愈伤组织诱导及植株再生[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 曾浩, 李佩芳, 郭至辉, 刘春林, 阮颖. 银扇草再生体系的建立[J]. 植物学报, 2024, 59(3): 433-440. |
[3] | 张尚文, 黄诗宇, 杨天为, 李婷, 张向军, 高曼熔. 基于正交实验的赤苍藤组培快繁体系建立[J]. 植物学报, 2024, 59(1): 99-109. |
[4] | 谢纯刚, 刘哲, 章书声, 胡海涛. 手指柠檬茎段离体再生体系建立[J]. 植物学报, 2023, 58(6): 926-934. |
[5] | 刘小飞, 孙映波, 黄丽丽, 杨钰钗, 朱根发, 于波. 黑鹅绒海芋体细胞胚发生和植株再生[J]. 植物学报, 2023, 58(5): 750-759. |
[6] | 刘叶飞, 赵海霞, 姜希萍, 邱锐, 周昕越, 赵彦, 付春祥. 野大麦高效组培快繁及农杆菌介导的愈伤侵染体系建立[J]. 植物学报, 2023, 58(3): 440-448. |
[7] | 李楚然, 付羚, 刘云, 杨晓琴, 朱国磊, 解思达, 马焕成, 赵平. 樟叶越桔细胞悬浮培养条件的优化[J]. 植物学报, 2022, 57(2): 227-235. |
[8] | 逯锦春, 曹丽娜, 佟冠杰, 王鑫颖, 张利英, 喻锌, 李荟芳, 李彦慧. 大花银莲花愈伤组织诱导及再生体系的建立[J]. 植物学报, 2022, 57(2): 217-226. |
[9] | 李孟悦, 刘柳, 刘艳, 张晓曼. 毛报春(Primula × pubescens)腋芽再生组织培养体系的建立[J]. 植物学报, 2021, 56(6): 732-739. |
[10] | 熊雅倩, 邓显豹, 张会会, 杨东, 孙恒, 刘娟, 杨美. 莲的离体快速繁殖技术[J]. 植物学报, 2021, 56(5): 605-613. |
[11] | 李艳敏, 蒋卉, 符真珠, 张晶, 袁欣, 王慧娟, 高杰, 董晓宇, 王利民, 张和臣. 芍药花药愈伤组织诱导及体细胞胚发生[J]. 植物学报, 2021, 56(4): 443-450. |
[12] | 杜鹏飞, 王玉, 曹英萍, 杨松, 孙志超, 毛德才, 鄢家俊, 李达旭, 孙美贞, 付春祥, 白史且. 基因枪介导的老芒麦遗传转化体系的建立[J]. 植物学报, 2021, 56(1): 62-70. |
[13] | 张冬瑞, 卜志刚, 陈玲玲, 常缨. 香鳞毛蕨的组织培养和快速繁殖体系构建[J]. 植物学报, 2020, 55(6): 760-767. |
[14] | 刘建飞, 刘炎, 刘克俭, 池阳, 霍志发, 霍永洪, 由香玲. 长白落叶松体胚发生再生体系优化[J]. 植物学报, 2020, 55(5): 605-612. |
[15] | 邓莎, 吴艳妮, 吴坤林, 房林, 李琳, 曾宋君. 14种中国典型极小种群野生植物繁育特性和人工繁殖研究进展[J]. 生物多样性, 2020, 28(3): 385-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||