植物学报 ›› 2025, Vol. 60 ›› Issue (3): 1-0.DOI: 10.11983/CBB24165 cstr: 32102.14.CBB24165
• 专题论坛 • 上一篇
陈鹏翔, 王波, 王子俊, 韩榕*
收稿日期:
2024-10-30
修回日期:
2025-01-09
出版日期:
2025-05-10
发布日期:
2025-01-21
通讯作者:
韩榕
基金资助:
Pengxiang Chen, Bo Wang, Zijun Wang, Rong Han*
Received:
2024-10-30
Revised:
2025-01-09
Online:
2025-05-10
Published:
2025-01-21
Contact:
Rong Han
摘要: 作为太阳光的固有成分, UV-B在植物生长发育方面有重要影响。随着对UV-B研究的深入, 人们认识到UV-B不仅是环境胁迫影响因子, 还是植物生长过程中一个重要的信号分子, 适度的UV-B辐射对植物生长具有促进作用。UVR8是UV-B特有的光感受器, 在植物响应UV-B过程中发挥不可替代的作用, 且其发挥作用还需依赖转录因子。差异表达基因是多细胞真核生物发育过程中的关键要素, 转录因子可调节靶基因表达, 因此编码转录因子的基因通常是真核生物发育的主要调控基因。目前, 已知BBX、WRKY、MYB和PIF等多种转录因子参与调控UV-B辐射下的下胚轴伸长、主根长度、叶片大小及形态、开花周期和花青素合成等过程。该文主要综述了UVR8在UV-B信号通路中的分子机制, 并对转录因子在UV-B辐射过程中的调控机理进行总结, 以期为相关研究提供参考。
陈鹏翔, 王波, 王子俊, 韩榕. 转录因子在植物响应UV-B辐射中的调控作用. 植物学报, 2025, 60(3): 1-0.
Pengxiang Chen, Bo Wang, Zijun Wang, Rong Han. The Regulation of Transcription Factor in Plant Response UV-B Radiation. Chinese Bulletin of Botany, 2025, 60(3): 1-0.
[1]BAI S, SAITO T, HONDA C, et al(2014).An apple B-box protein,MdCOL11,is involved in UV-B- and temperature-induced anthocyanin biosynthesis.Planta, 240:1051-1062.[2]BINKERT M, KOZMA-BOGNAR L, TERECSKEI K, et al(2014).UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes,including its own promoter.Plant Cell, 26:4200-4213.[3]BROWN B A, CLOIX C, JIANG G H, et al(2005).UV-B-specific signaling component orchestrates plant UV protection.Proceedings of national academy of sciences of the United States of America, 102:18225-18230.[4]BROWN B A, HEADLAND L R, JENKINS G I(2009).UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis.Photochem Photobiol, 85:1147-1155.[5]BURSCH K, TOLEDO-ORTIZ G, PIREYRE M, et al(2020).Identification of BBX proteins as rate-limiting cofactors of HY5.Nature Plants, 6:921-928.[6]CAI Y, LIU Y, FAN Y, et al(2023).MYB112 connects light and circadian clock signals to promote hypocotyl elongation in Arabidopsis.Plant Cell, 35:3485-3503.[7]CAO Y, LI K, LI Y, et al(2020).MYB Transcription Factors as Regulators of Secondary Metabolism in Plants.Biology, 9:61-61.[8]CHEN S, PODOLEC R, ARONGAUS A B, et al(2024).Functional divergence of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 in repression of flowering.Plant Physiol, 194:1563-1576.[9]CRESTANI G, CUNNINGHAM N, CSEPREGI K, et al(2023).From stressor to protector,UV-induced abiotic stress resistance.Photochem Photobiol Sci, 22:2189-2204.[10]DATTA S, JOHANSSON H, HETTIARACHCHI C, et al(2008).LZF1SALT TOLERANCE HOMOLOG3,an Arabidopsis B-box protein involved in light-dependent development and gene expression,undergoes COP1-mediated ubiquitination.Plant Cell, 20:2324-2338.[11]DEMARSY E(2022).WRKY-ing in the light.New Phytol, 235:5-7.[12]DUBOS C, STRACKE R, GROTEWOLD E, et al(2010).MYB transcription factors in Arabidopsis.Trends Plant Science, 15:573-581.[13]FANG F, LIN L, ZHANG Q, et al(2022).Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics.New Phytologist, 236:1824-1837.[14]FAVORY J-J, STEC A, GRUBER H, et al(2009).Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.EMBO J, 28:591-601.[15]GAILLOCHET C, BURKO Y, PLATRE M P, et al(2022).HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in Arabidopsis.Development, 147:240-252.[16]GANGAPPA S N, BOTTO J F(2014).The BBX family of plant transcription factors.Trends Plant Science, 19:460-470.[17]GANGAPPA S N, BOTTO J F(2016).The Multifaceted Roles of HY5 in Plant Growth and Development.Mol Plant, 9:1353-1365.[18]GOYAL P, DEVI R, VERMA B, et al(2023).WRKY transcription factors: evolution,regulation,and functional diversity in plants.Protoplasma, 260:331-348.[19]GRUBER H, HEIJDE M, HELLER W, et al(2010).Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.Proceedings of national academy of sciences of the United States of America, 107:20132-20137.[20]GUILFOYLE T J, HAGEN G(2007).Auxin response factors.Current Opinion in Plant Biology, 10:453-460.[21]HAN X, HUANG X, DENG X W(2020).The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution.Plant Communications, 1:100044-100056.[22]HAVES S, SHARMA A, P.FRASER D, et al(2017).UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis.Current Biology, 27:120-127.[23]HAYES S, VELANIS C N, JENKINS G I, et al(2014).UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance.Proceedings of national academy of sciences of the United States of America, 111:11894-11899.[24]HEIJDE M, ULM R(2012).Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state.Proceedings of the National Academy of Sciences, 110:1113-1118.[25]HENG Y, LIN F, JIANG Y, et al(2019).B-Box Containing Proteins BBX30 and BBX31,Acting Downstream of HY5,Negatively Regulate Photomorphogenesis in Arabidopsis.lant Physiology, 180:497-508.[26]HUANG X, OUYANG X, YANG P, et al(2012).Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis Plant Cell.Plant, Cell,:4590-4606.[27]JIANG L, WANG Y, LI Q F, et al(2012).Arabidopsis STOBBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity.Cell Research, 22:1046-1057.[28]JOB N, LINGWAN M, MASAKAPALLI S K, et al(2022).Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B.Plant Physiology, 189:2467-2480.[29]KIM B C, TENNESSEN D J, LAST R L(1998).UV-B-induced photomorphogenesis in Arabidopsis thaliana.Plant J, 15:667-674.[30]KüPERS J J, OSKAM L, PIERIK R(2020).Photoreceptors Regulate Plant Developmental Plasticity through Auxin.Plants, 9:940-952.[31]LI C, YU W, XU J, et al(2022).Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants.International Journal of Molecular Sciences, 23:11701-11710.[32]LI X, REN Q, ZHAO W, et al(2023).Interaction between UV-B and plant anthocyanins.Functional Plant Biology, 50:599-611.[33]LIANG T, MEI S, SHI C, et al(2018).UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis.Development Cell, 44:512-523.[34]LIANG T, SHI C, PENG Y, et al(2020).Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants.Plant Cell, 32:3224-3239.[35]LIANG T, YANG Y, LIU H(2018).Signal transduction mediated by the plant UV‐B photoreceptor UVR8.New Phytologist, 221:1247-1252.[36]LIN N, LIU X, ZHU W, et al(2021).Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis.Journal of Agricultural and Food Chemistr, 69:3401-3414.[37]LOCKHART J(2014).How ELONGATED HYPOCOTYL5 helps protect plants from UV-B rays.Plant Cell, 26:3826-3834.[38]LYU G, LI D, LI S(2020).Bioinformatics analysis of BBX family genes and its response to UV-B in Arabidopsis thaliana.Plant Signal Behav, 15:-.[39]MIAO T, LI D, HUANG Z, et al(2021).Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana.Plant Signaling & Behavior, 16:79-92.[40]MOSADEGH, TRIVELLINI, LUCCHESINI, et al(2019).UV-B Physiological Changes Under Conditions of Distress and Eustress in Sweet Basil.Plants, 85:396-396.[41]NG D, ABEYSINGHE J, KAMALI M(2018).Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling.International Journal of Molecular Sciences, 19:3737-3737.[42]ORAVECZ A, BAUMANN A, MATE Z, et al(2006).CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis.Plant Cell, 18:1975-1990.[43]PETRONI K, FALASCA G, CALVENZANI V, et al(2008).The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro.Journal of Experimental Botany, 59:1201-1213.[44]PODOLEC R, DEMARSY E, ULM R(2021).Perception and Signaling of Ultraviolet-B Radiation in Plants.Annual Review of Plant Biology, 72:793-822.[45]PODOLEC R, ULM R(2018).Photoreceptor-mediated regulation of the COP1SPA E3 ubiquitin ligase.Current Opinion in Plant Biology, 45:18-25.[46]PODOLEC R, WAGNON T B, LEONARDELLI M, et al(2022).Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses.Plant Journal, 111:422-439.[47]PONNU J(2022).B-BOXing against UV rays: The BBX11-HY5 feedback loop regulates plant ultraviolet B tolerance.Plant Physiology, 189:1904-1905.[48]QIAN C, CHEN Z, LIU Q, et al(2020).Coordinated Transcriptional Regulation by the UV-B Photoreceptor and Multiple Transcription Factors for Plant UV-B Responses.Molecular Plant, 13:777-792.[49]QIAN C, MAO W, LIU Y, et al(2016).Dual-Source Nuclear Monomers of UV-B Light Receptor Direct Photomorphogenesis in Arabidopsis.Molecular Plant, 9:1671-1674.[50]RAI N, NEUGART S, YAN Y, et al(2019).How do cryptochromes and UVR8 interact in natural and simulated sunlight.Journal of Experimental Botany, 70:4975-4990.[51]RATCLIFFE O J, RIECHMANN J L(2002).Arabidopsis transcription factors and the regulation of flowering time a genomic perspective.Curr Issues Mol Biol, 4:77-91.[52]SAINI P, BHATIA S, MAHAJAN M, et al(2020).ELONGATED HYPOCOTYL5 Negatively Regulates DECREASE WAX BIOSYNTHESIS to Increase Survival during UV-B Stress.Plant Physiology, 184:2091-2106.[53]SHARMA A, PRIDGEON A J, LIU W, et al(2023).ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) maintain shade avoidance suppression in UV‐B.Plant Journal, 115:1394-1407.[54]SHARMA A, SHARMA B, HAYES S, et al(2019).UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight.UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nature Commun, 10:4417-4423.[55]SHI C, LIU H(2021).How plants protect themselves from ultraviolet-B radiation stress.Plant Physiology, 187:1096-1103.[56]SHIN D H, CHOI M, KIM K, et al(2013).HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75PAP1 transcription factor in Arabidopsis.FEBS Letters, 587:1543-1547.[57]STRACKE R, FAVORY J J, GRUBER H, et al(2010).The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1MYB12 gene in response to light and ultraviolet-B radiation.Plant Cell Environment, 33:88-103.[58]STRACKE R, ISHIHARA H, HUEP G, et al(2007).Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling.Plant Journal, 50:660-677.[59]STRADER L, WEIJERS D, WAGNER D(2022).Plant transcription factors — being in the right place with the right company.Current Opinion in Plant Biology, 65:-.[60]TAKEDA J(2021).Molecular Mechanisms of UVR8‐Mediated Photomorphogenesis Derived from Revaluation of Action Spectra.Photochemistry and Photobiology, 97:903-910.[61]TAVRIDOU E, SCHMID-SIEGERT E, FANKHAUSER C, et al(2020).UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis.PLoS Genetics, 16:8797-8804.[62]VERMA S, ATTULURI V P S, ROBERT H S(2022).Transcriptional control of Arabidopsis seed development.Planta, 255:90-90.[63]WANG L, WANG Y, CHANG H, et al(2023).RUP2 facilitates UVR8 redimerization via two interfaces.Plant Communications, 4:428-433.[64]WANG W, PAIK I, KIM J, et al(2021).Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis.New Phytologist, 230:2311-2326.[65]WANG X, NIU Y, ZHENG Y(2021).Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses.Int J Mol Sci, 22:6125-6125.[66]WANG Y, WANG L, GUAN Z, et al(2022).Structural insight into UV-B–activated UVR8 bound to COP1.Sci Adv, 85:1-9.[67]WANG Y, ZHOU H, HE Y, et al(2023).MYB transcription factors and their roles in the male reproductive development of flowering plants.Plant Science, 335:111-117.[68]WEIDEMüLLER P, KHOLMATOV M, PETSALAKI E, et al(2021).Transcription factors: Bridge between cell signaling and gene regulation.Proteomics, 21:-.[69]WU X, CHEN B, XIAO J, et al(2023).Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period.Frontiers in Plant Science, 14:-.[70]XU D(2020).COP1 and BBXs-HY5-mediated light signal transduction in plants.New Phytologist, 228:1748-1753.[71]XU Y, ZHU Z(2020).UV-B Response: When UVR8 Meets MYBs.Trends Plant Science, 255:515-517.[72]YADAV A, BAKSHI S, YADUKRISHNAN P, et al(2019).The B-Box-Containing MicroProtein miP1aBBX31 Regulates Photomorphogenesis and UV-B Protection.Plant Physiology, 179:1876-1892.[73]YADAV A, LINGWAN M, YADUKRISHNAN P, et al(2019).BBX31 promotes hypocotyl growth,primary root elongation and UV-B tolerance in Arabidopsis.Plant Signaling & Behavior, 14:673-679.[74]YADAV A, SINGH D, LINGWAN M, et al(2020).Light signaling and UV-B-mediated plant growth regulation.Journal of Integrative Plant Biology, 62:1270-1292.[75]YADUKRISHNAN P, DATTA S(2020).Light and abscisic acid interplay in early seedling development.New Phytologist, 229:763-769.[76]YAN H, PEI X, ZHANG H, et al(2021).MYB-Mediated Regulation of Anthocyanin Biosynthesis.International Journal of Molecular Sciences, 22:3103-3109.[77]YANG G, ZHANG C, DONG H, et al(2022).Activation and negative feedback regulation of SlHY5 transcription by the SlBBX2021-SlHY5 transcription factor module in UV-B signaling.Plant Cell, 34:2038-2055.[78]YANG Y, LIANG T, ZHANG L, et al(2018).UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis.Nature Plants, 4:98-107.[79]YANG Y, LIU H(2020).Coordinated Shoot and Root Responses to Light Signaling in Arabidopsis.Plant Communications, 1:26-31.[80]YANG Y, ZHANG L, CHEN P, et al(2020).UV-B photoreceptor UVR8 interacts with MYB73MYB77 to regulate auxin responses and lateral root development.EMBO Journal, 39:1920-1928.[81]YAO J W, MA Z, MA Y Q, et al(2020).Role of melatonin in UV‐B signaling pathway and UV‐B stress resistance in Arabidopsis thaliana.Plant, Cell & Environment, 44:114-129.[82]YIN R, SKVORTSOVA M Y, LOUBéRY S, et al(2016).COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor.Proceedings of the National Academy of Sciences, 113:38-45.[83]YIN X, ZHANG Y, ZHANG L, et al(2021).Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers.Frontiers in Plant Science, 12:49-52.[84]ZENG Y, SCHOTTE S, TRINH H K, et al(2022).Genetic Dissection of Light-Regulated Adventitious Root Induction in Arabidopsis thaliana Hypocotyls.International Journal of Molecular Sciences, 23:5301-5309.[85]ZHANG Q, LIN L, FANG F, et al(2022).Dissecting the functions of COP1 in the UVR8 pathway with a COP1 variant in Arabidopsis.Plant Journal, 113:478-492.[86]ZHANG X, HUAI J, SHANG F, et al(2017).A PIF1PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis.Plant Physiol, 174:2487-2500.[87]ZHANG Z, XU C, ZHANG S, et al(2022).Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization.Plant Physiology, 188:332-346.[88]ZHAO J, BO K, PAN Y, et al(2023).Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls.Journal of Experimental Botany, 74:4520-4539.[89]ZHOU H, ZHU W, WANG X, et al(2022).A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis.New Phytologist, 235:111-125.[90]ZHOU J, MENG J, ZHANG S, et al(2022).The UV-B-Induced Transcription Factor HY5 Regulated Anthocyanin Biosynthesis in Zanthoxylum bungeanum.International Journal of Molecular Sciences, 23:2651-2660.[91]陈慧泽, 牛靖蓉, 韩榕(2021).植物紫外光受体的信号转导途径.植物生理学报, 57:1179-1188. |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 杜英杰 范爱连 王雪 闫晓俊 陈廷廷 贾林巧 姜琦 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 赵珮杉 高广磊 丁国栋 张英. 林龄和生态位对樟子松人工林地下真菌群落构建的影响[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[4] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[5] | 赵常明 熊高明 申国珍 葛结林 徐文婷 徐凯 武元帅 谢宗强. 神农架常绿落叶阔叶混交林和亚高山针叶林植物群落特征数据集[J]. 植物生态学报, 2025, 49(典型生态系统数据集): 0-0. |
[6] | 李冬梅 孙龙 韩宇 胡同欣 杨光 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 0-0. |
[7] | 熊良林, 梁国鲁, 郭启高, 景丹龙. 基因可变剪接调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2025, 60(3): 1-0. |
[8] | 郭雨桐 李素萃 王智 解焱 杨雪 周广金 尤春赫 朱萨宁 高吉喜. 全国自然保护地国家重点保护野生物种覆盖度及其分布状况分析评估[J]. 生物多样性, 2025, 33(2): 24423-. |
[9] | 夏琳凤, 李瑞, 王海政, 冯大领, 王春阳. 轮藻门植物基因组学研究进展[J]. 植物学报, 2025, 60(2): 1-0. |
[10] | 韩大勇 李海燕 张维 杨允菲. 东北碱化草甸芦苇匍匐株超速生长过程与光合特性及生理调节[J]. 植物生态学报, 2025, 49(2): 320-330. |
[11] | 张婵 赵苏雅 张欣然 王依凡 王林林. 外来传粉者对本地植物-传粉者相互作用的影响[J]. 生物多样性, 2025, 33(2): 24443-. |
[12] | 吴昱萱 王平 胡晓生 丁一 彭甜恬 植秋滢 巴德木其其格 李文杰 关潇 李俊生. 呼伦贝尔草地退化现状评估与植被特征变化[J]. 生物多样性, 2025, 33(2): 24118-. |
[13] | 闫小红 傅英健 胡文海. 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应[J]. 植物生态学报, 2025, 49(2): 331-342. |
[14] | 王宗能, 祁杏漾, 刘健, 苏代发, 杨俊誉, 崔晓龙. 植物内源性病毒研究进展[J]. 生物多样性, 2025, 33(2): 24419-. |
[15] | 吕加一, 李乐攻, 侯聪聪. 基于FRET原理的生物传感器:小分子荧光探针在植物中的研究进展[J]. 植物学报, 2025, 60(2): 1-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||