植物学报 ›› 2025, Vol. 60 ›› Issue (2): 271-282.DOI: 10.11983/CBB24083 cstr: 32102.14.CBB24083
收稿日期:
2024-05-30
接受日期:
2024-12-14
出版日期:
2025-03-10
发布日期:
2024-12-17
通讯作者:
冯大领,王春阳
基金资助:
Linfeng Xia, Rui Li, Haizheng Wang, Daling Feng*(), Chunyang Wang*(
)
Received:
2024-05-30
Accepted:
2024-12-14
Online:
2025-03-10
Published:
2024-12-17
Contact:
Daling Feng, Chunyang Wang
摘要: 轮藻门(Charophyta)植物与陆生植物组成单系的链形植物门, 化石证据和分子证据支持陆生植物起源于轮藻门植物。该文总结了已完成全基因组测序的10种轮藻门植物的14个全基因组信息, 综述了植物陆地化的分子机制, 表明调控植物激素信号转导和编码关键转录因子的基因家族扩张和基因水平转移是轮藻产生预适应的潜在原因。文中阐述了轮藻门植物全基因组数据在转录组学和基因功能研究中的作用, 提出端粒到端粒的基因组和泛基因组对于深入理解植物陆地化的重要性, 以及整合基因组信息和生物学实验在解析轮藻门植物基因功能和起源方面的必要性。
夏琳凤, 李瑞, 王海政, 冯大领, 王春阳. 轮藻门植物基因组学研究进展. 植物学报, 2025, 60(2): 271-282.
Linfeng Xia, Rui Li, Haizheng Wang, Daling Feng, Chunyang Wang. Research Advances and Prospects in Charophytes Genomics. Chinese Bulletin of Botany, 2025, 60(2): 271-282.
图1 绿色植物系统发生(参考Li et al., 2020; Jiao et al., 2020; Domozych and Bagdan, 2022)
Figure 1 Phylogeny of green plants (refer from Li et al., 2020; Jiao et al., 2020; Domozych and Bagdan, 2022)
Species | Class | Order | Family |
---|---|---|---|
Zygnema circumcarinatum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Z. cf. cylindricum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Mesotaenium endlicherianum | Zygnematophyceae | Zygnematales | Mesotaeniaceae |
Spirogloea muscicola | Zygnematophyceae | Spirogloeales | Spirogloeaceae |
Closterium peracerosum-strigosum-littorale complex | Zygnematophyceae | Desmidiales | Closteriaceae |
Penium margaritaceum | Zygnematophyceae | Desmidiales | Peniaceae |
Chara braunii | Charophyceae | Charales | Characeae |
Klebsormidium nitens | Klebsormidiophyceae | Klebsormidiales | Klebsormidiaceae |
Chlorokybus atmophyticus | Chlorokybophyceae | Chlorokybales | Chlorokybaceae |
Mesostigma viride | Mesostigmatophyceae | Mesostigmatales | Mesostigmataceae |
表1 已完成全基因组测序的轮藻门植物及分类层级
Table 1 Charophytes with fully sequenced genomes and their taxonomic hierarchy
Species | Class | Order | Family |
---|---|---|---|
Zygnema circumcarinatum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Z. cf. cylindricum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Mesotaenium endlicherianum | Zygnematophyceae | Zygnematales | Mesotaeniaceae |
Spirogloea muscicola | Zygnematophyceae | Spirogloeales | Spirogloeaceae |
Closterium peracerosum-strigosum-littorale complex | Zygnematophyceae | Desmidiales | Closteriaceae |
Penium margaritaceum | Zygnematophyceae | Desmidiales | Peniaceae |
Chara braunii | Charophyceae | Charales | Characeae |
Klebsormidium nitens | Klebsormidiophyceae | Klebsormidiales | Klebsormidiaceae |
Chlorokybus atmophyticus | Chlorokybophyceae | Chlorokybales | Chlorokybaceae |
Mesostigma viride | Mesostigmatophyceae | Mesostigmatales | Mesostigmataceae |
Species (strain) | Predicted genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Zygnema circumcarinatum (SAG 698-1b) | 66.7 | 71.0 | 90 (20) | 3958.3 | 50.0 | 16617 | Feng et al., |
Z. circumcarinatum (UTEX 1559) | 66.3 | 71.3 | 614 | 3970.3 | 49.5 | 18062 | Feng et al., |
Z. circumcarinatum (UTEX 1560) | 67.8 | 67.3 | 514 | 3792.7 | 49.5 | 18654 | Feng et al., |
Z. cf. cylindricum (SAG 698-1a_XF) | 322.5 | 359.8 | 3587 | 213.9 | 40.0 | 45178 | Feng et al., |
Mesotaenium endlicherianum (SAG 12.97) | 163.0 | 173.8 | 13942 | 448.4 | 52.0 | 11080 | Cheng et al., |
Spirogloea muscicola (CCAC 0214) | 174.0 | 171.1 | 19678 | 566 | 56.5 | 27137 | Cheng et al., |
Closterium peracerosum-strigosum-littorale complex (NIES-67) | 365.0 | 360.0 | NA | 351* | 56.1 | 29752 | Sekimoto et al., |
C. peracerosum-strigosum-littorale complex (NIES-68) | 361.0 | 337.0 | NA | 275* | 55.8 | 28427 | Sekimoto et al., |
Penium margaritaceum (SAG 2640) | 4700.0 | 3661.0 | 332786 | 116.1 | 51.0 | 52333 | Jiao et al., |
表2 双星藻纲轮藻植物基因组组装统计
Table 2 Genome data for the Zygnematophyceae of charophytes
Species (strain) | Predicted genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Zygnema circumcarinatum (SAG 698-1b) | 66.7 | 71.0 | 90 (20) | 3958.3 | 50.0 | 16617 | Feng et al., |
Z. circumcarinatum (UTEX 1559) | 66.3 | 71.3 | 614 | 3970.3 | 49.5 | 18062 | Feng et al., |
Z. circumcarinatum (UTEX 1560) | 67.8 | 67.3 | 514 | 3792.7 | 49.5 | 18654 | Feng et al., |
Z. cf. cylindricum (SAG 698-1a_XF) | 322.5 | 359.8 | 3587 | 213.9 | 40.0 | 45178 | Feng et al., |
Mesotaenium endlicherianum (SAG 12.97) | 163.0 | 173.8 | 13942 | 448.4 | 52.0 | 11080 | Cheng et al., |
Spirogloea muscicola (CCAC 0214) | 174.0 | 171.1 | 19678 | 566 | 56.5 | 27137 | Cheng et al., |
Closterium peracerosum-strigosum-littorale complex (NIES-67) | 365.0 | 360.0 | NA | 351* | 56.1 | 29752 | Sekimoto et al., |
C. peracerosum-strigosum-littorale complex (NIES-68) | 361.0 | 337.0 | NA | 275* | 55.8 | 28427 | Sekimoto et al., |
Penium margaritaceum (SAG 2640) | 4700.0 | 3661.0 | 332786 | 116.1 | 51.0 | 52333 | Jiao et al., |
Species (strain) | Predicting genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Chara braunii (S276) | 2355.0 | 1751.5 | 11654 | 2260 | 48.3 | 23546 | Nishiyama et al., |
Klebsormidium nitens (NIES-2285) | 117.1±21.8 | 104.0 | 1812 | 134.9 | 52.4 | 16215 | Hori et al., |
Chlorokybus atmophyticus (CCAC 0220) | 85.0 | 74.0 | 3836 | 752.4 | 51.5 | 9066 | Wang et al., |
Mesostigma viride (CCAC 1140) | 329.0 | 281.0 | 6924 | 113.2 | 55.0 | 9198 | Wang et al., |
M. viride (NIES-296) | NA | 442.6 | 2363 | 2558.7 | 54.5 | 24431 | Liang et al., |
表3 4个非双星藻纲的轮藻植物基因组组装统计
Table 3 Genome data for four charophyte species outside of the Zygnematophyceae
Species (strain) | Predicting genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Chara braunii (S276) | 2355.0 | 1751.5 | 11654 | 2260 | 48.3 | 23546 | Nishiyama et al., |
Klebsormidium nitens (NIES-2285) | 117.1±21.8 | 104.0 | 1812 | 134.9 | 52.4 | 16215 | Hori et al., |
Chlorokybus atmophyticus (CCAC 0220) | 85.0 | 74.0 | 3836 | 752.4 | 51.5 | 9066 | Wang et al., |
Mesostigma viride (CCAC 1140) | 329.0 | 281.0 | 6924 | 113.2 | 55.0 | 9198 | Wang et al., |
M. viride (NIES-296) | NA | 442.6 | 2363 | 2558.7 | 54.5 | 24431 | Liang et al., |
[1] | Adamowski M, Friml J (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20-32. |
[2] |
Akatsuka S, Sekimoto H, Iwai H, Fukumoto RH, Fujii T (2003). Mucilage secretion regulated by sex pheromones in Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 44, 1081-1087.
PMID |
[3] |
Ariel FD, Manavella PA, Dezar CA, Chan RL (2007). The true story of the HD-Zip family. Trends Plant Sci 12, 419-426.
DOI PMID |
[4] | Bierenbroodspot MJ, Darienko T, de Vries S, Fürst- Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J (2024). Phylogenomic insights into the first multicellular streptophyte. Curr Biol 34, 670-681. |
[5] |
Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014). The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65, 5577-5587.
DOI PMID |
[6] |
Cheng SF, Xian WF, Fu Y, Marin B, Keller J, Wu T, Sun WJ, Li XL, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang SB, Li LZ, Liu X, Wang J, Yang HM, Xu X, Delaux PM, Melkonian B, Wong GKS, Melkonian M (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057-1067.
DOI PMID |
[7] |
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun SQ, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J (2023). Environmental gradients reveal stress hubs pre-dating plant terrestrialization. Nat Plants 9, 1419-1438.
DOI PMID |
[8] |
de Vries J, Archibald JM (2018). Plant evolution: landmarks on the path to terrestrial life. New Phytol 217, 1428-1434.
DOI PMID |
[9] |
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC (2019). Evolution of cell wall polymers in tip-growing land plant gametophytes: composition, distribution, functional aspects and their remodeling. Front Plant Sci 10, 441.
DOI PMID |
[10] | Delwiche CF, Cooper ED (2015). The evolutionary origin of a terrestrial flora. Curr Biol 25, R899-R910. |
[11] |
Domozych DS, Bagdan K (2022). The cell biology of charophytes: exploring the past and models for the future. Plant Physiol 190, 1588-1608.
DOI PMID |
[12] | Fan Y, Yan J, Lai DL, Yang H, Xue GX, He AL, Guo TR, Chen L, Cheng XB, Xiang DB, Ruan JJ, Cheng JP (2021). Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 22, 509. |
[13] | Feng XH, Zheng JF, Irisarri I, Yu HH, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang XY, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang JL, Mutwil M, de Vries J, Yin YB (2024). Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 56, 1018-1031. |
[14] | Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009). In vitro reconstitution of an abscisic acid signaling pathway. Nature 462, 660-664. |
[15] |
Fürst-Jansen JMR, de Vries S, de Vries J (2020). Evo- physio: on stress responses and the earliest land plants. J Exp Bot 71, 3254-3269.
DOI PMID |
[16] | Fürst-Jansen JMR, de Vries S, Lorenz M, von Schwartzenberg K, Archibald JM, de Vries J,(2022). Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. Protoplasma 259, 1157-1174. |
[17] |
Gidda SK, Park S, Pyc M, Yurchenko O, Cai YQ, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016). Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol 170, 2052-2071.
DOI PMID |
[18] | Gong SD, Xie WS, Zhao RP, Feng KN, Chen LL (2024). Progress and prospect of plant telomere-to-telomere (T2T) genome. Genomics Appl Biol 43, 933-942. (in Chinese) |
宫少达, 谢文召, 赵如鹏, 冯康宁, 陈玲玲 (2024). 植物端粒到端粒(T2T)基因组研究进展与展望. 基因组学与应用生物学 43, 933-942. | |
[19] | Greene EL (1887). Bibliographical notes on well known plants. I. Bull Torrey Bot Club 14, 136-139. |
[20] | Guiry MD (2021). AlgaeBase: a global database for algae. Curr Sci India 121, 10-11. |
[21] | Guiry MD, Guiry GM (2025). AlgaeBase, world-wide electronic publication. Galway: National University of Ireland. https://www.algaebase.org. 2025-02-14. |
[22] | Hamilton JP, Buell CR (2012). Advances in plant genome sequencing. Plant J 70, 177-190. |
[23] | Han XJ, He YY, Cui XB (2008). Economic value and application prospects of Charophyte algae. China Sci Technol Inform 10, 70-71. (in Chinese) |
韩晓静, 何雨原, 崔晓波 (2008). 轮藻植物的经济价值及应用前景. 中国科技信息 10, 70-71. | |
[24] | Heß D, Heise CM, Schubert H, Hess WR, Hagemann M (2023). The impact of salt stress on the physiology and the transcriptome of the model streptophyte green alga Chara braunii. Physiol Plant 175, e14123. |
[25] | Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J,(2022). A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 32, 4473-4482. |
[26] | Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N, Moriyama T, Ikeuchi M, Watanabe M, Wada H, Kobayashi K, Saito M, Masuda T, Sasaki-Sekimoto Y, Mashiguchi K, Awai K, Shimojima M, Masuda S, Iwai M, Nobusawa T, Narise T, Kondo S, Saito H, Sato R, Murakawa M, Ihara Y, Oshima-Yamada Y, Ohtaka K, Satoh M, Sonobe K, Ishii M, Ohtani R, Kanamori-Sato M, Honoki R, Miyazaki D, Mochizuki H, Umetsu J, Higashi K, Shibata D, Kamiya Y, Sato N, Nakamura Y, Tabata S, Ida S, Kurokawa K, Ohta H (2014). Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5, 3978. |
[27] | Horňák M (2022). Land Plant Terrestrialization—New Insights from Genomes of Charophyte Algae. Bachelor’s thesis. Prague: Charles University. |
[28] |
Huang Y, He JX, Xu YT, Zheng WK, Wang SH, Chen P, Zeng B, Yang SZ, Jiang XL, Liu ZS, Wang L, Wang X, Liu SJ, Lu ZH, Liu ZA, Yu HW, Yue JQ, Gao JY, Zhou XY, Long CR, Zeng XL, Guo YJ, Zhang WF, Xie ZZ, Li CL, Ma ZC, Jiao WB, Zhang F, Larkin RM, Krueger RR, Smith MW, Ming R, Deng XX, Xu Q (2023). Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat Genet 55, 1964-1975.
DOI PMID |
[29] | Jiao C, Sørensen I, Sun XP, Sun HH, Behar H, Alseekh S, Philippe G, Lopez KP, Sun L, Reed R, Jeon S, Kiyonami R, Zhang S, Fernie AR, Brumer H, Domozych DS, Fei ZJ, Rose JKC (2020). The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181, 1097-1111. |
[30] |
Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001). The closest living relatives of land plants. Science 294, 2351-2353.
DOI PMID |
[31] |
Kersting AR, Bornberg-Bauer E, Moore AD, Grath S (2012). Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 4, 316-329.
DOI PMID |
[32] | Li LZ, Wang SB, Wang HL, Sahu SK, Marin B, Li HY, Xu Y, Liang HP, Li Z, Cheng SF, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du HL, Yang HM, Wang J, Wong GK, Xu X, Liu X, Van De Peer Y, Melkonian M, Liu H (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 4, 1220-1231. |
[33] | Liang Z, Geng YK, Ji CM, Du H, Wong CE, Zhang Q, Zhang Y, Zhang PX, Riaz A, Chachar S, Ding YK, Wen J, Wu YW, Wang MC, Zheng HK, Wu YM, Demko V, Shen LS, Han X, Zhang PP, Gu XF, Yu H (2019). Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci 7, 1901850. |
[34] |
Ma JC, Wang SH, Zhu XJ, Sun GL, Chang GX, Li LH, Hu XY, Zhang SZ, Zhou Y, Song CP, Huang JL (2022). Major episodes of horizontal gene transfer drove the evolution of land plants. Mol Plant 15, 857-871.
DOI PMID |
[35] |
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi KI, Kamiya Y, Kasahara H (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108, 18512-18517.
DOI PMID |
[36] | Mueller SP, Krause DM, Mueller MJ, Fekete A (2015). Accumulation of extra-chloroplastic triacylglycerols in Ara- bidopsis seedlings during heat acclimation. J Exp Bot 66, 4517-4526. |
[37] |
Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373-1379.
DOI PMID |
[38] |
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PKI, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang CR, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA(2018). The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448-464.
DOI PMID |
[39] | One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. |
[40] | Pringsheim M (1862). XXXIII.—On the pro-embryos of the Charae. Ann Mag Nat Hist 10, 321-326. |
[41] |
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018). The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28, 733-745.
DOI PMID |
[42] |
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014). From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14, 23.
DOI PMID |
[43] | Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T (2023). A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. New Phytol 237, 1636-1651. |
[44] |
Sémon M, Wolfe KH (2007). Consequences of genome duplication. Curr Opin Genet Dev 17, 505-512.
PMID |
[45] | Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ (2022). Transcriptomic and metabolomic response to high light in the charophyte alga Klebsormidium nitens. Front Plant Sci 13, 855243. |
[46] | Simmons CR, Herman RA (2023). Non-seed plants are emerging gene sources for agriculture and insect control proteins. Plant J 116, 23-37. |
[47] |
Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang YZ, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J (2019). PIN-driven auxin transport emerged early in streptophyte evolution. Nat Plants 5, 1114-1119.
DOI PMID |
[48] | Sun XL, Jones WT, Rikkerink EHA (2012). GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. Biochem J 442, 1-12. |
[49] | Wang CY, Gong Z, Han GZ (2023). On the origins and evolution of phytohormone signaling and biosynthesis in plants. Mol Plant 16, 511-513. |
[50] |
Wang CY, Liu Y, Li SS, Han GZ (2014). Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci 19, 741-743.
DOI PMID |
[51] |
Wang CY, Liu Y, Li SS, Han GZ (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167, 872-886.
DOI PMID |
[52] |
Wang SB, Li LZ, Li HY, Sahu SK, Wang HL, Xu Y, Xian WF, Song B, Liang HP, Cheng SF, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang HM, Wang J, Melkonian B, Van de Peer Y, Xu X, Wong GKS, Melkonian M, Liu H, Liu X (2020). Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6, 95-106.
DOI PMID |
[53] | Wang YH, Yu JX, Tang HB, Zhang XT (2024). Research status and prospect of plant complex genomes and pan- genomes. Sci China Life Sci 54, 233-246. (in Chinese) |
王英豪, 余嘉鑫, 唐海宝, 张兴坦 (2024). 植物复杂基因组与泛基因组研究现状与展望. 中国科学: 生命科学 54, 233-246. | |
[54] | Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian ZJ, Yan ZX, Wu XL, Sun X, Wong GKS, Leebens-Mack J (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111, E4859-E4868. |
[55] |
Wu Z, Cheng SF (2021). Overview on the origin of land plants. Chin J Nat 43, 225-231. (in Chinese)
DOI |
吴珍, 程时锋 (2021). 陆地植物起源研究的新进展. 自然杂志 43, 225-231. | |
[56] |
Xie LJ, Gong XJ, Yang K, Huang YJ, Zhang SY, Shen LT, Sun YQ, Wu DY, Ye CY, Zhu QH, Fan LJ (2024). Technology-enabled great leap in deciphering plant genomes. Nat Plants 10, 551-566.
DOI PMID |
[57] | Xue JZ, Shen B, Huang P (2022). How did plants colonize land and reshape Earth’s surface systems? Earth Sci 47, 3849-3850. (in Chinese) |
薛进庄, 沈冰, 黄璞 (2022). 植物如何登上陆地并改造地球表层系统? 地球科学 47, 3849-3850. | |
[58] |
Zhou H, von Schwartzenberg K (2020). Zygnematophyceae: from living algae collections to the establishment of future models. J Exp Bot 71, 3296-3304.
DOI PMID |
[1] | 林珍, 向家宝, 蔡何佳奕, 高贝, 杨金涛, 李俊毅, 周青松, 黄晓磊, 邓鋆. 七种半翅目昆虫线粒体基因组数据[J]. 生物多样性, 2025, 33(2): 24434-. |
[2] | 曹东, 李焕龙, 彭扬, 魏存争. 植物基因组大小与性状关系的研究进展[J]. 生物多样性, 2025, 33(2): 24192-. |
[3] | 邓洪, 钟占友, 寇春妮, 朱书礼, 李跃飞, 夏雨果, 武智, 李捷, 陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史[J]. 生物多样性, 2025, 33(1): 24241-. |
[4] | 姚祥坦, 张心怡, 陈阳, 袁晔, 程旺大, 王天瑞, 邱英雄. 基于基因组重测序揭示栽培欧菱遗传多样性及‘南湖菱’的起源驯化历史[J]. 生物多样性, 2024, 32(9): 24212-. |
[5] | 张强, 赵振宇, 李平华. 基因编辑技术在玉米中的研究进展[J]. 植物学报, 2024, 59(6): 978-998. |
[6] | 李园, 范开建, 安泰, 李聪, 蒋俊霞, 牛皓, 曾伟伟, 衡燕芳, 李虎, 付俊杰, 李慧慧, 黎亮. 玉米自然群体自交系农艺性状的多环境全基因组预测初探[J]. 植物学报, 2024, 59(6): 1041-1053. |
[7] | 陈文娜, 李良涛, 周璐, 姚纲. 太行山近期隆升促进太行花属(蔷薇科)谱系分化[J]. 植物学报, 2024, 59(5): 763-773. |
[8] | 胡丹玲, 孙永伟. 病毒介导的植物基因组编辑技术研究进展[J]. 植物学报, 2024, 59(3): 452-462. |
[9] | 杨智, 杨永. 重要林木樟科植物全基因组测序研究进展[J]. 植物学报, 2024, 59(2): 302-318. |
[10] | 段政勇, 丁敏, 王宇卓, 丁艺冰, 陈凌, 王瑞云, 乔治军. 糜子SBP基因家族全基因组鉴定及表达分析[J]. 植物学报, 2024, 59(2): 231-244. |
[11] | 于熙婷, 黄学辉. 现代玉米起源新见解——两类大刍草的混血[J]. 植物学报, 2023, 58(6): 857-860. |
[12] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[13] | 武棒棒, 郝宇琼, 杨淑斌, 黄雨茜, 关攀锋, 郑兴卫, 赵佳佳, 乔玲, 李晓华, 刘维仲, 郑军. 山西小麦籽粒叶黄素含量变异及遗传特性分析[J]. 植物学报, 2023, 58(4): 535-547. |
[14] | 孙蓉, 杨宇琭, 李亚军, 张会, 李旭凯. 谷子PLATZ转录因子基因家族的鉴定和分析[J]. 植物学报, 2023, 58(4): 548-559. |
[15] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||