植物学报 ›› 2016, Vol. 51 ›› Issue (5): 620-630.DOI: 10.11983/CBB16006
贾乐东, 李施蒙, 许代香, 曲存民, 李加纳, 王瑞*()
收稿日期:
2016-01-11
接受日期:
2016-04-26
出版日期:
2016-09-01
发布日期:
2018-08-10
通讯作者:
王瑞
作者简介:
# 共同第一作者
基金资助:
Jia Ledong, Li Shimeng, Xu Daixiang, Qu Cunmin, Li Jiana, Wang Rui*()
Received:
2016-01-11
Accepted:
2016-04-26
Online:
2016-09-01
Published:
2018-08-10
Contact:
Wang Rui
About author:
# Co-first authors
摘要: 在高等植物花药发育和花粉形成中, MYB转录因子起着非常重要的作用, 其中MYB80是参与绒毡层发育及引起雄性不育的重要转录因子。该研究以拟南芥(Arabidopsis thaliana) AtMYB80为参考序列, 通过BLAST比对分析, 在白菜(Brassica rapa)、甘蓝(B. oleracea)和甘蓝型油菜(B. napus)中分别获得MYB80基因的2、2和6个同源序列, 运用生物信息学方法对其核苷酸序列及编码的氨基酸序列进行组成成分、亚细胞定位、磷酸化位点、疏水性/亲水性、蛋白质二级、三级结构和功能域分析。结果表明, MYB80转录因子亚细胞定位于细胞核, 具有多个不同的磷酸化位点, 肽链表现为亲水性; 二级、三级结构预测显示, MYB80蛋白以α-螺旋和无规则卷曲为主要结构元件; 保守结构域分析表明, 其N端具有2个串联的SANT功能域, 属于R2R3型MYB转录因子。多重序列比对和进化树分析结果表明, 甘蓝型油菜与白菜、甘蓝的序列相似性大于92%, 且MYB80转录因子的功能结构域具有较高的同源性和较强的序列保守性。该研究结果对深入解析甘蓝型油菜MYB80的生物学功能及育性调控的分子机理具有重要意义, 为甘蓝型油菜杂种优势利用提供了依据。
贾乐东, 李施蒙, 许代香, 曲存民, 李加纳, 王瑞. 甘蓝型油菜BnMYB80基因的生物信息学分析. 植物学报, 2016, 51(5): 620-630.
Jia Ledong, Li Shimeng, Xu Daixiang, Qu Cunmin, Li Jiana, Wang Rui. Bioinformatics Analysis of BnMYB80 Genes in Brassica napus . Chinese Bulletin of Botany, 2016, 51(5): 620-630.
Gene name | Gene ID | Chromosome | Length (aa) | MW (kDa) | pI | Instability | Aliphatic index | Gravy |
---|---|---|---|---|---|---|---|---|
BrMYB80A02 | 103851848 | A02 | 320 | 36.1054 | 6.95 | 35.89 | 65.88 | -0.808 |
BrMYB80A10 | 103845046 | A10 | 320 | 35.8452 | 7.24 | 33.15 | 69.81 | -0.721 |
BolMYB80C02 | 106327859 | C02 | 324 | 36.5430 | 7.75 | 37.04 | 66.57 | -0.790 |
BolMYB80C09 | 106317148 | C09 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80A02 | 106389601 | A02 | 322 | 36.3678 | 6.95 | 35.55 | 65.47 | -0.792 |
BnMYB80A10 | 674915774 | A10 | 320 | 35.8232 | 7.24 | 34.62 | 68.59 | -0.712 |
BnMYB80C02 | 106379735 | C02 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80C03 | 106385056 | C03 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80C05 | 106400365 | C05 | 319 | 35.7842 | 6.90 | 33.76 | 68.50 | -0.738 |
BnMYB80Cnn | 106389601 | Cnn | 324 | 36.5490 | 6.93 | 35.65 | 66.57 | -0.771 |
表1 MYB80转录因子的理化性质
Table 1 Physicochemical parameters of MYB80 transcription factors
Gene name | Gene ID | Chromosome | Length (aa) | MW (kDa) | pI | Instability | Aliphatic index | Gravy |
---|---|---|---|---|---|---|---|---|
BrMYB80A02 | 103851848 | A02 | 320 | 36.1054 | 6.95 | 35.89 | 65.88 | -0.808 |
BrMYB80A10 | 103845046 | A10 | 320 | 35.8452 | 7.24 | 33.15 | 69.81 | -0.721 |
BolMYB80C02 | 106327859 | C02 | 324 | 36.5430 | 7.75 | 37.04 | 66.57 | -0.790 |
BolMYB80C09 | 106317148 | C09 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80A02 | 106389601 | A02 | 322 | 36.3678 | 6.95 | 35.55 | 65.47 | -0.792 |
BnMYB80A10 | 674915774 | A10 | 320 | 35.8232 | 7.24 | 34.62 | 68.59 | -0.712 |
BnMYB80C02 | 106379735 | C02 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80C03 | 106385056 | C03 | 320 | 35.9113 | 7.22 | 31.94 | 68.56 | -0.740 |
BnMYB80C05 | 106400365 | C05 | 319 | 35.7842 | 6.90 | 33.76 | 68.50 | -0.738 |
BnMYB80Cnn | 106389601 | Cnn | 324 | 36.5490 | 6.93 | 35.65 | 66.57 | -0.771 |
Gene name | CDS (bp) | Exon | MYB80 conserved domain (aa) | ||||
---|---|---|---|---|---|---|---|
SANT | SANT | IRO | KNOX1 | Cir_N | |||
BrMYB80A02 | 1772 | 3 | 13-63 | 66-114 | - | - | - |
BrMYB80A10 | 1631 | 3 | 13-63 | 66-114 | - | - | - |
BolMYB80C02 | 1891 | 4 | 13-63 | 66-114 | 123-140 | 130-173 | 246-282 |
BolMYB80C09 | 1573 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80A02 | 1653 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | 244-280 |
BnMYB80A10 | 1471 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80C02 | 1471 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80C03 | 1471 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | - |
BnMYB80C05 | 1461 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | - |
BnMYB80Cnn | 1668 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | 246-282 |
表2 MYB80转录因子的保守结构域分析
Table 2 Analysis of conserved domains of MYB80 transcription factors
Gene name | CDS (bp) | Exon | MYB80 conserved domain (aa) | ||||
---|---|---|---|---|---|---|---|
SANT | SANT | IRO | KNOX1 | Cir_N | |||
BrMYB80A02 | 1772 | 3 | 13-63 | 66-114 | - | - | - |
BrMYB80A10 | 1631 | 3 | 13-63 | 66-114 | - | - | - |
BolMYB80C02 | 1891 | 4 | 13-63 | 66-114 | 123-140 | 130-173 | 246-282 |
BolMYB80C09 | 1573 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80A02 | 1653 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | 244-280 |
BnMYB80A10 | 1471 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80C02 | 1471 | 3 | 13-63 | 66-114 | 123-140 | 130-173 | - |
BnMYB80C03 | 1471 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | - |
BnMYB80C05 | 1461 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | - |
BnMYB80Cnn | 1668 | 3 | 13-63 | 66-144 | 123-140 | 130-173 | 246-282 |
Gene name | α helix (%) | Extend strand (%) | β turn (%) | Random coil (%) |
---|---|---|---|---|
BrMYB80A02 | 41.25 | 11.56 | 10.00 | 37.19 |
BrMYB80A10 | 37.81 | 14.06 | 10.00 | 38.12 |
BolMYB80C02 | 44.14 | 10.19 | 8.64 | 37.04 |
BolMYB80C09 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80A02 | 42.55 | 11.18 | 9.63 | 36.65 |
BnMYB80A10 | 37.19 | 15.00 | 10.31 | 37.50 |
BnMYB80C02 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80C03 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80C05 | 36.68 | 14.73 | 10.03 | 38.56 |
BnMYB80Cnn | 44.14 | 10.49 | 9.57 | 35.80 |
表3 MYB80蛋白的二级结构预测
Table 3 Predicted secondary structure of MYB80 protein
Gene name | α helix (%) | Extend strand (%) | β turn (%) | Random coil (%) |
---|---|---|---|---|
BrMYB80A02 | 41.25 | 11.56 | 10.00 | 37.19 |
BrMYB80A10 | 37.81 | 14.06 | 10.00 | 38.12 |
BolMYB80C02 | 44.14 | 10.19 | 8.64 | 37.04 |
BolMYB80C09 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80A02 | 42.55 | 11.18 | 9.63 | 36.65 |
BnMYB80A10 | 37.19 | 15.00 | 10.31 | 37.50 |
BnMYB80C02 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80C03 | 35.94 | 15.31 | 10.94 | 37.81 |
BnMYB80C05 | 36.68 | 14.73 | 10.03 | 38.56 |
BnMYB80Cnn | 44.14 | 10.49 | 9.57 | 35.80 |
图2 BnMYB80蛋白的三级结构预测
Figure 2 Predicted tertiary structure of BnMYB80 proteins (A) BnMYB80A02; (B) BnMYB80A10; (C) BnMYB80C02; (D) BnMYB80C03; (E) BnMYB80C05; (F) BnMYB80Cnn
1 | 陈凤祥, 胡宝成, 李强生, 张曼琳 (1993). 甘蓝型油菜细胞核雄性不育材料9012A的发现与初步研究. 北京农业大学学报 9, 57-61. |
2 | 邓志刚, 金樑, 李晶, 王文斌, 杨龙, 王晓娟 (2013). MYB类转录因子对花药和花粉发育的调控途径. 西北植物学报 33, 850-856. |
3 | 方子君, 石其龙, 杨仲南, 张森 (2008). 水稻OsMS2基因在花药发育中的功能分析. 植物学通报 25, 665-672. |
4 | 郭弘光, 吴繁花 (2012). MYB转录因子功能与调控研究进展. 安徽农业科学 40, 10381-10383,10516. |
5 | 侯国佐, 王华, 张瑞茂 (1990). 甘蓝型油菜细胞核雄性不育材料117A的遗传研究. 中国油料 2, 7-10. |
6 | 胡胜武, 于澄宇, 赵惠贤, 路明 (2002). 甘蓝型油菜显性核不育材料Shaan-GMS纯合两型系803AB的选育. 西北农业学报 11, 25-27. |
7 | 李树林, 周志疆, 周熙荣 (1993). 甘蓝型油菜隐性核不育系S45AB的遗传. 上海农业学报 9, 1-7. |
8 | 刘琪迩, 杜坤, 王幼平 (2015). 油菜细胞质雄性不育与育性恢复机理的研究进展. 生物技术通报 31, 15-22. |
9 | 刘淑娟, 朱祺, 幸学俊, 王碧琴, 余发新, 周华 (2014). 植物雄性不育影响因素研究进展. 中国农学通报 30, 46-50. |
10 | 宋来强, 傅廷栋, 杨光圣, 涂金星, 马朝芝 (2005). 1对复等位基因控制的油菜(Brassica napus)显性核不育系609AB的遗传验证. 作物学报 31, 869-875. |
11 | 孙超才, 赵华, 王伟荣, 李延莉, 钱小芳, 方光华 (2002). 甘蓝型油菜隐性核不育系20118A的遗传与利用探讨. 中国油料作物学报 24, 1-4. |
12 | 王超, 安学丽, 张增为, 杨青, 饶力群, 陈信波, 方才臣, 万向元 (2013). 植物隐性核雄性不育基因育种技术体系的研究进展与展望. 中国生物工程杂志 33, 124-130. |
13 | 王瑞, 李加纳, 唐章林, 谌利, 徐新福 (2005). 显性核不育油菜圆叶纯合两型系 GdlAB的选育. 中国农学通报 21, 174-175, 229. |
14 | 王通强, 田筑萍, 黄泽素, 魏忠芬, 邵明波 (1999). 甘蓝型双低油菜细胞核显性雄性不育系黔油2AB的选育. 贵州农业科学 27, 14-18. |
15 | 周熙荣, 庄静, 孙超才, 王伟荣, 李延莉, 杨立勇, 蒋美艳, 顾龙弟, 钱小芳 (2010). 甘蓝型油菜显性核不育纯合两型系“HY15AB”的选育. 上海农业学报 26, 1-4. |
16 | 俎峰, 夏胜前, 顿小玲, 周正富, 曾芳琴, 易斌, 文静, 马朝芝, 沈金雄, 涂金星, 傅廷栋 (2010). 基于分子标记的油菜隐性核不育7-7365AB遗传模式探究. 中国农业科学 43, 3067-3075. |
17 | Cai CF, Zhu J, Lou Y, Guo ZL, Xiong SX, Wang K, Yang ZN (2015). The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development bet- ween rice and Arabidopsis.Sci Bull 60, 1073-1082. |
18 | Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Corréa M, Silva CD, Just J, Falentin C, Koh CS, Clainche IL, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier MCL, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950-953. |
19 | Feng BM, Lu DH, Ma X, Peng YB, Sun YJ, Ning G, Ma H (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development.Plant J 72, 612-624. |
20 | Graybosch RA, Bernard RL, Cremeens CR, Palmer RG (1984). Genetic and cytological studies of a male-sterile, female-fertile soybean mutant, a new male-sterile gene (ms2) in Glycine max (L.) Merr.J Hered 75, 383-388. |
21 | Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R (1993). The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1, 3-glucanases.Plant J 4, 1023-1033. |
22 | Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005). VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17, 584-596. |
23 | Li SF, Higginson T, Parish RW (1999). A novel MYB- related gene from Arabidopsis thaliana expressed in developing anthers.Plant Cell Physiol 40, 343-347. |
24 | Li SF, Iacuone S, Parish RW (2007). Suppression and restoration of male fertility using a transcription factor. Plant Biotechnol J 5, 297-312. |
25 | Liu SY, Liu YM, Yang XH, Tong CB, Edwards D, Parkin IAP, Zhao MX, Ma JX, Yu JY, Huang SM, Wang XY, Wang JY, Lu K, Fang ZY, Bancroft I, Yang TJ, Hu Q, Wang XF, Yue Z, Li HJ, Yang LF, Wu J, Zhou Q, Wang WX, King GJ, Pires JC, Lu CX, Wu ZY, Sampath P, Wang Z, Guo H, Pan SK, Yang LM, Min JM, Zhang D, Jin DC, Li WS, Belcram H, Tu JX, Guan M, Qi CQ, Du DZ, Li JN, Jiang LC, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong CH, Wang L, Li JP, Hu ZY, Zhuang M, Huang Y, Huang JY, Shi JQ, Mei DS, Liu J, Lee TH, Wang JP, Jin HZ, Li ZY, Li X, Zhang JF, Xiao L, Zhou YM, Liu ZS, Liu XQ, Qin R, Tang X, Liu WB, Wang YP, Zhang YY, Lee J, Kim HH, Denoeud F, Xu X, Liang XM, Hua W, Wang XW, Wang J, Chalhoub B, Paterson AH (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes.Nat Commun 5, 3930. |
26 | Lu PL, Chai MF, Yang JG, Ning G, Wang GL, Ma H (2014). The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis.Plant Physiol 164, 1893-1904. |
27 | McCormick S (2004). Control of male gametophyte develop- ment.Plant Cell 16, 142-153. |
28 | Pabo CO, Sauer RT (1992). Transcription factors: structural families and principles of DNA recognition.Annu Rev Biochem 61, 1053-1095. |
29 | Parish RW, Li SF (2010). Death of a tapetum: a programme of development altruism.Plant Sci 178, 73-89. |
30 | Phan HA, Iacuone S, Li SF, Parish RW (2011). The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23, 2209-2224. |
31 | Phan HA, Li SF, Parish RW (2012). MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol 78, 171-183. |
32 | Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003). The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor.Plant J 33, 413-423. |
33 | Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX, Hua W, Wang JY, Wang XY, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu BH, Li B, Liu B, Tong CB, Song C, Duran C, Peng CF, Geng CY, Koh C, Lin CY, Edwards D, Mu DS, Shen D, Soumpourou E, Li F, Fraser F, Lassalle G, King GJ, Bonnema G, Tang HB, Wang HP, Belcram H, Zhou HL, Hirakawa H, Abe H, Guo H, Wang H, Jin HZ, Parkin IAP, Batley J, Kim JS, Just J, Li JW, Xu JH, Deng J, Kim JA, Li JP, Yu JY, Meng JL, Wang JP, Min JM, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao MX, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai QL, Huang QF, Li RQ, Tabata S, Cheng SF, Zhang S, Zhang SJ, Huang SM, Sato S, Sun SL, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li YR, Du YC, Liao YC, Lim Y, Narusaka Y, Wang YP, Wang ZY, Li ZY, Wang ZW, Xiong ZY, Zhang ZH (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43, 1035-1039. |
34 | Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001). The Arabidopsis MALE STERILITY (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28, 27-39. |
35 | Xu Y, Lacuone S, Li SF, Parish RW (2014). MYB80 homo- logues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development.BMC Plant Biol 14, 278. |
36 | Zhang S, Fang ZJ, Zhu J, Gao JF, Yang ZN (2010). OsMYB103 is required for rice anther development by regulating tapetum development and exine formation.Sci Bull 55, 3288-3297. |
37 | Zhang W, Sun Y, Timofejeva L, Chen CB, Grossniklaus U, Ma H (2006). Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPET- UM1 (DYT1) encoding a putative bHLH transcription factor.Development 133, 3085-3095. |
38 | Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007). Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis.Plant J 52, 528-538. |
39 | Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008). Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis.Plant J 55, 266-277. |
[1] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43介导甘蓝型油菜响应干旱胁迫[J]. 植物学报, 2023, 58(5): 701-711. |
[2] | 吴楠, 覃磊, 崔看, 李海鸥, 刘忠松, 夏石头. 甘蓝型油菜EXA1的克隆及其对植物抗病的调控作用[J]. 植物学报, 2023, 58(3): 385-393. |
[3] | 徐聪, 张飞宇, 俞道远, 孙新, 张峰. 土壤动物的分子分类预测策略评估[J]. 生物多样性, 2022, 30(12): 22252-. |
[4] | 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法I: 全基因组关联分析概述[J]. 植物学报, 2020, 55(6): 715-732. |
[5] | 左泽远,刘琬琳,许杰. 拟南芥花药绒毡层细胞中具有基因簇特征的基因进化和功能分析[J]. 植物学报, 2020, 55(2): 147-162. |
[6] | 李格,孟小庆,李宗芸,朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析[J]. 植物学报, 2020, 55(1): 38-48. |
[7] | 宋敏,张瑶,王丽莹,彭向永. 甘蓝型油菜ZF-HD基因家族的鉴定与系统进化分析[J]. 植物学报, 2019, 54(6): 699-710. |
[8] | 程广前,贾克利,李娜,邓传良,李书粉,高武军. 石刁柏核质体DNA的生物信息学分析及染色体定位[J]. 植物学报, 2019, 54(3): 328-334. |
[9] | 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633. |
[10] | 高虎虎, 张云霄, 胡胜武, 郭媛. 甘蓝型油菜MADS-box基因家族的鉴定与系统进化分析[J]. 植物学报, 2017, 52(6): 699-712. |
[11] | 刘凯歌, 齐双慧, 段绍伟, 李东, 金倡宇, 高晨浩, 刘绚霞, 陈明训. 甘蓝型油菜BnTTG1-1基因的功能分析[J]. 植物学报, 2017, 52(6): 713-722. |
[12] | 程甜, 魏强, 李广林. 中粒咖啡萜类合成酶基因家族的生物信息学分析[J]. 植物学报, 2016, 51(2): 235-250. |
[13] | 徐晓婷, 王志恒, DimitarDimitrov. 批量下载GenBank基因序列数据的新工具——NCBIminer[J]. 生物多样性, 2015, 23(4): 550-555. |
[14] | 李春宏, 付三雄, 戚存扣. 应用基因芯片分析甘蓝型油菜柱头特异表达基因[J]. 植物学报, 2014, 49(3): 246-253. |
[15] | 付三雄, 李成磊, 尼玛卓玛, 唐林, 戚存扣. 气象因子对油菜种子中油分积累的影响[J]. 植物学报, 2014, 49(1): 41-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||