Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (1): 81-88.doi: 10.11983/CBB14196

Previous Articles     Next Articles

Effect of LED in Different Light Qualities on Growth of Phalaenopsis Plantlets

Guiping Ren1,2, Xiaojing Wang1, Genfa Zhu2*   

  1. 1Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
    2Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences,Guangzhou 510640, China
  • Received:2014-11-15 Accepted:2015-04-14 Online:2016-02-01 Published:2016-01-01
  • Contact: Zhu Genfa E-mail:genfazhu@163.com
  • About author:? These authors contributed equally to this paper

Abstract:

We used the aseptic seedlings of 2 cultivars (Phalaenopsis ssp. cv. ‘Green Bear’ and Phalaenopsis ssp. cv. ‘Big Chilli’) to investigate the effect of LED in different light qualities on multiplication and rooting in vitro. The experimental design included 15 different light sources composed of six kinds of LED light, namely RED(630), R(630)8B2, R(630)7B3, R(630)5B5, R(630)3B7, R(630)2B8, BLUE, RED(660), R(660)7B3, R(660)5B5, CW5R(630)5, Warm W, R(630)6B3FR1, R(630)4B4FR2, R(630)3B6FR1, and WFL (control). Under red light illumination, seeding growth and the number of shoots were promoted, but chlorophyll content of leaves was reduced, but it was increased under the mixture of blue and red LEDs. Blue light had a positive effect on chlorophyll content. Root activity was increased with increasing ratio of blue in the combined red and blue LEDs and increased under the three light sources supplemented with far-red light. Blue and far-red light were more effective in root length. Shoots could be more successfully induced under Warm W light. Compared with WFL light, the number of shoots of the 2 varieties was increased by 53.17% and 46.37%, respectively. Therefore, the best light recipe for the multiplication and rooting of Phalaenopsis were Warm W and R(630)3B6FR1 light. The present study provides a proof of application of LEDs in Phalaenopsis tissue culture.

Key words: light-emitting diode, light quality, Phalaenopsis, tissue culture

Table 1

The ratio of different light qualities of LED"

Light treatment Factors Wavelength
RED(630) Red 630 nm
R(630)8B2 Red:Blue=8:2 630 nm/450-480 nm
R(630)7B3 Red:Blue=7:3 630 nm/450-480 nm
R(630)5B5 Red:Blue=5:5 630 nm/450-480 nm
R(630)3B7 Red:Blue=3:7 630 nm/450-480 nm
R(630)2B8 Red:Blue=2:8 630 nm/450-480 nm
BLUE Blue 450-480 nm
RED(660) Red 660 nm
R(660)7B3 Red:Blue=7:3 660 nm/450-480 nm
R(660)5B5 Red:Blue=5:5 660 nm/450-480 nm
CW5R(630)5 Cold white:Red=5:5 630 nm/400-780 nm
Warm W Warm white LED 400 nm-780 nm (the range of 500-780 nm accounts for 91.80%)
R(630)6B3FR1 Red:Blue:Far red=6:3:1 630 nm/450-480 nm/730 nm
R(630)4B4FR2 Red:Blue:Far red=4:4:2 630 nm/450-480 nm/730 nm
R(630)3B6FR1 Red:Blue:Far red=3:6:1 630 nm/450-480 nm/730 nm
WFL White fluorescent tube 360-750 nm

Table 2

Multiplication coefficient of Phalaenopsis shoot under different light qualities of LED"

Light treatment Green Bear Big Chilli
Multiplication
coefficient
Ratio (%)
(number of shoot≥3)
Ratio (%)
(number of shoot≥4)
Multiplication
coefficient
Ratio (%)
(number of shoot≥3)
RED(630) 2.85±0.16 c 51.39 25.00 2.20±0.14 g 34.55
R(630)8B2 2.26±0.13 a 38.46 11.54 1.85±0.11 cdef 18.52
R(630)7B3 2.33±0.14 a 36.84 13.16 1.78±0.12 bcdef 12.73
R(630)5B5 2.19±0.15 a 32.43 9.46 1.63±0.09 abcde 9.26
R(630)3B7 2.14±0.12 a 25.71 10.00 1.69±0.11 abcdef 14.55
R(630)2B8 2.37±0.11 a 36.90 11.90 1.50±0.08 abc 3.57
BLUE 2.27±0.13 a 33.33 14.67 1.66±0.13 abcdef 16.00
RED(660) 2.80±0.15 bc 56.25 25.00 2.00±0.12 fg 32.14
R(660)7B3 2.13±0.13 a 35.94 9.38 1.86±0.10 defg 21.57
R(660)5B5 2.39±0.14 ab 40.26 18.18 1.75±0.11 bcdef 19.23
CW5R(630)5 2.43±0.15 ab 38.67 20.00 1.94±0.12 efg 20.75
Warm W 3.14±0.17 c 62.16 36.49 2.02±0.12 fg 26.98
R(630)6B3FR1 2.32±0.17 a 34.78 14.49 1.49±0.09 ab 6.38
R(630)4B4FR2 2.29±0.19 a 31.82 13.64 1.56±0.09 abcd 8.33
R(630)3B6FR1 2.35±0.11 a 37.84 10.81 1.45±0.09 ab 5.45
WFL 2.05±0.12 a 22.08 6.49 1.38±0.07 a 1.82

Table 3

Effects of different light qualities of LED on morphology of Phalaenopsis "

Light treatment Green Bear Big Chilli
FW (g) DW (mg) Height (mm) FW (g) DW (mg) Height (mm)
RED(630) 0.94±0.05 bcde 49.56±2.81 abc 38.16±1.31 ef 0.74±0.04 bc 41.28±5.24 ab 42.77±1.11 f
R(630)8B2 0.90±0.05 bcde 49.58±2.81 abc 36.63±1.13 cde 0.81±0.05 bcd 42.01±2.45 ab 36.61±1.03 cd
R(630)7B3 0.84±0.05 abc 47.30±3.33 ab 33.15±1.00 ab 0.75±0.05 bc 42.82±2.59 abc 34.21±0.99 bc
R(630)5B5 0.79±0.05 ab 47.86±3.34 ab 34.59±0.88 bcd 0.74±0.04 bcd 41.89±2.19 ab 34.20±0.86 bc
R(630)3B7 0.71±0.05 a 43.16±2.70 a 32.94±0.77 ab 0.73±0.04 bc 46.04±2.37 bc 28.98±1.09 a
R(630)2B8 0.80±0.06 ab 45.01±3.61 a 30.94±0.78 a 0.76±0.05 bcd 43.65±2.53 bc 32.53±0.85 b
BLUE 0.79±0.05 ab 53.30±3.35 abcd 39.68±0.89 f 0.74±0.04 bc 41.88±2.46 ab 37.79±1.01 de
RED(660) 0.83±0.05 abc 47.80±2.49 ab 37.41±0.90 def 0.89±0.05 d 53.17±7.59 c 42.78±1.26 f
R(660)7B3 1.04±0.05 e 56.86±1.77 bcde 37.18±0.92 def 0.68±0.04 b 40.16±2.74 ab 32.92±1.13 b
R(660)5B5 0.95±0.05 bcde 58.26±3.12 cde 32.93±0.76 ab 0.83±0.05 cd 42.41±2.14 ab 34.37±1.14 bc
CW5R(630)5 0.99±0.05 cde 56.80±3.06 bcde 34.94±0.96 bcd 0.75±0.04 bcd 47.30±2.94 bc 38.83±1.14 de
Warm W 1.04±0.06 e 60.25±3.61 de 36.37±1.08 cde 0.81±0.05 bc 41.76±2.27 ab 40.70±1.19 ef
R(630)6B3FR1 0.88±0.05 abcde 50.44±2.82 abcd 34.96±0.98 bcd 0.70±0.04 bc 43.67±2.11 bc 32.41±0.87 b
R(630)4B4FR2 1.04±0.08 de 63.37±4.68 e 34.47±1.22 bcd 0.81±0.03 bcd 49.82±2.56 bc 33.02±1.16 b
R(630)3B6FR1 0.86±0.04 abcd 51.89±2.46 abcd 34.69±0.91 bcd 0.69±0.04 bc 42.69±1.96 abc 31.55±0.98 ab
WFL 0.87±0.06 abcde 50.63±3.17 abcd 33.74±0.83 abc 0.53±0.03 a 32.59±1.60 a 31.32±0.98 ab

Figure 1

Effects of different light qualities of LED on chlorophyll content of Phalaenopsis leaves (A) Chlorophyll content of Green Bear (B) Chlorophyll content of Big Chilli. WFL: white fluorescent tube"

Figure 2

The growth conditions of partial Phalaenopsis’s plantlet under different light quality of LED(A)-(D) Multiple shoots of Green Bear after 60 day’s multiplication culture; (E)-(H) Multiple shoots of Big Chilli after 60 day’s multiplication culture; (I)-(L) Plantlet of Green Bear after 60 day’s rooting culture; (M)-(P) Plantlet of Big Chilli after 60 day’s rooting culture. Bar=2 cm"

Table 4

Effects of different light qualities of LED on rooting of Phalaenopsis plantlet"

Light treatment Green Bear Big Chilli
Root length
(mm)
Number of root Root activity
(mg·g-1·h-1)
Root length (mm) Number of root Root activity (mg·g-1·h-1)
RED(630) 19.11±0.76 a 3.78±0.22 cde 92.08±12.84 a 12.50±0.89 a 2.67±0.16 a 118.74±15.12 a
R(630)8B2 20.34±0.99 ab 3.36±0.20 abcd 106.1±16.47 ab 25.33±1.39 b 2.68±0.11 a 177.04±22.40 abc
R(630)7B3 20.50±0.86 ab 3.92±0.18 de 115.53±10.06 abc 30.65±1.42 cd 3.02±0.14 abc 185.91±20.58 abc
R(630)5B5 21.77±0.94 abc 2.88±0.16 a 148.8±26.45 abcd 37.38±1.88 fg 3.30±0.12 cde 201.35±30.95 abc
R(630)3B7 23.65±0.91 bcde 4.03±0.19 e 180.87±17.96 cd 36.20±1.38 efg 3.43±0.12 def 201.76±38.83 abc
R(630)2B8 21.08±1.02 abc 3.73±0.23 cde 211.99±18.74 de 36.56±1.75 efg 3.25±0.14 cde 271.84±49.93 cde
BLUE 22.80±1.18 bcd 3.07±0.20 ab 253.49±11.79 e 36.50±1.73 efg 3.42±0.14 def 323.20±73.13 de
RED(660) 20.93±0.97 ab 3.76±0.19 cde 166.72±3.95 bcd 33.77±1.51 def 3.82±0.14 f 148.01±16.17 ab
R(660)7B3 23.69±1.27 bcde 3.25±0.18 abc 182.35±25.72 cd 27.40±1.46 bc 3.19±0.14 cd 183.29±12.02 abc
R(660)5B5 20.82±0.95 ab 3.71±0.22 cde 259.68±29.63 e 31.12±2.77 cde 3.09±0.20 bc 261.83±39.75 bcde
CW5R(630)5 20.74±0.97 ab 3.53±0.16 bcde 171.98±33.48 bcd 31.54±1.90 cde 3.46±0.15 def 188.82±20.36 abc
Warm W 22.29±0.92 abcd 3.73±0.21 cde 211.05±17.48 de 30.66±2.00 cd 3.57±0.14 def 225.28±40.13 abcd
R(630)6B3FR1 24.27±1.01 cde 3.86±0.19 cde 260.63±29.06 e 39.22±1.83 fg 3.67±0.11 ef 351.65±24.40 ef
R(630)4B4FR2 26.40±1.29 e 3.75±0.15 cde 349.41±31.61 f 39.88±2.17 g 3.56±0.15 def 366.20±29.03 ef
R(630)3B6FR1 25.04±0.96 de 3.74±0.19 cde 369.49±36.35 f 40.35±2.08 g 3.58±0.15 def 449.72±57.66 f
WFL 20.53±1.06 ab 3.49±0.18 bcde 172.52±11.89 bcd 24.58±1.61 b 2.64±0.13 a 171.67±23.38 abc
1 白宝璋, 金锦子, 白崧, 黄丽萍 (1994). 玉米根系活力TTC测定法的改良. 玉米科学 2, 44-47.
2 陈志, 孙庆丽, 汪一婷, 牟豪杰, 吕永平, 周迪江, 陈剑平 (2012). 不同光质对甘蔗组培苗的影响. 农业工程 2, 51-57.
3 戴艳娇, 王琼丽, 张欢, 代大勇, 文民操, 徐志刚 (2010). 不同光谱的LEDs对蝴蝶兰组培苗生长的影响. 江苏农业科学 5, 227-231.
4 邸秀茹, 焦学磊, 崔瑾, 刘晓英, 孔燕, 徐志刚 (2008). 新型光源LED辐射的不同光质配比光对菊花组培苗生长的影响. 植物生理学通讯 44, 661-664.
5 杜建芳, 廖祥儒, 叶步青, 李萌 (2002). 光质对油菜幼苗生长及抗氧化酶活性的影响. 植物学通报 19, 743-745.
6 李韶山, 潘瑞炽 (1994). 蓝光对水稻幼苗生长效应的研究. 中国水稻科学 8, 115-118.
7 刘晓青, 苏家乐, 陈尚平, 李畅, 项立平, 何丽斯 (2013). 高山杜鹃叶片再生和试管苗生长对不同LED光质的响应特征. 江苏农业学报 29, 1451-1455.
8 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社. pp. 134-136.
9 闫新房, 丁林波, 丁义, 何松林 (2009). LED光源在植物组织培养中的应用. 中国农学通报 25, 42-45.
10 张玉娟, 朱根发 (2011). 蝴蝶兰. 北京: 中国农业出版社. pp. 1-3.
11 郑子松, 王红, 王神云, 于利, 李建斌, 刁阳隆 (2013). LED光源对结球甘蓝(Brassica oleracea var. capitatal)不定芽再生的影响. 天津农学院学报 20, 6-10.
12 Christenson EA (2001). Phalaenopsis, A Monograph. London: Timber Press. pp. 294-320.
13 Hahn EJ, Kozai T, Paek KY (2000). Blue and red light- emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets.J Plant Biol 43, 247-250.
14 Hsu HC, Chen CC (2010). The effect of light spectrum on the growth characteristics of in vitro cultures of Phalae- nopsis.Propag Ornam Plants 10, 3-8.
15 Kim SJ, Hahn EJ, Heo JW, Paek KY (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro.Sci Hortic 101, 143-151.
16 Lu YX, Godo T, Fujiwara K, Guan KY, Mii M (2013). Effect of nitrogen source and wavelength of LED-light on organo- genesis from leaf and shoot tip cultures in Lysionotus pauciflorus Maxim.Propag Ornam Plants 13, 174-180.
17 Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008). Plant productivity in response to LED lighting.Hortscience 7, 1951-1956.
18 Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998). In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs).J Hortic Sci Biotech 73, 39-44.
[1] Tang Fengluan,Zhao Jian,Zhao Zhiguo,Xia Ke,Qiu Shuo. Tissue Culture and Rapid Propagation of Ardisia gigantifolia [J]. Chin Bull Bot, 2019, 54(3): 378-384.
[2] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[3] An Baiyi, Guo Cainan, Bao Wenhui, Li Fengfei, Zhao He, Chen Li, An Fengyun. Rapid Propagation of Symplocos paniculata In Vitro [J]. Chin Bull Bot, 2018, 53(5): 693-699.
[4] LI Qi, HU Fei. Effects of light quality on circumnutation of Vigna unguiculata seedlings [J]. Chin J Plant Ecol, 2018, 42(12): 1192-1199.
[5] Liping Yan, Li Li, Cuilan Liu, Dejun Wu, Yinhua Wang, Fei Ren, Liangjun Zhao. Somatic Embryo Induction and Plantlet Regeneration of Fraxinus velutina [J]. Chin Bull Bot, 2016, 51(6): 807-816.
[6] Xianzhu Xu, Yisheng Tu, Zhidan Ji, Man Chen, Xianfeng Cai, Ping Yang. In vitro-cultured Morphological Changes in Huperzia serrata and Accumulation of Huperzine A [J]. Chin Bull Bot, 2015, 50(6): 733-738.
[7] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida [J]. Chin Bull Bot, 2014, 49(5): 595-602.
[8] Qinghong Zhang, Liyun Tang, Shaojin Situ, Sha Wang, Guozhen He. Tissue Culture of the Medicinal Plant Gardenia jasminoides [J]. Chin Bull Bot, 2014, 49(3): 331-336.
[9] Lin Liu, Bin Yu, Pengyan Huang, Jun Jia, Hua Zhao, Junhua Peng, Peng Chen, Liangcai Peng. Frequency of Callus Induction and Plant Regeneration Among Eight Genotypes in Miscanthus sinensis Species [J]. Chin Bull Bot, 2013, 48(2): 192-198.
[10] Dongting Xu, Junli Wang, Mingfei Liu, Kaili Bi, Yunfei Song. Tissue Culture and Plant Regeneration of Scabiosa tschiliensis [J]. Chin Bull Bot, 2011, 46(4): 476-478.
[11] Cui Huang, Danlong Jing, Yubing Wang, Shenhou Fan, Faju Chen. Callus Induction and Plant Regeneration of a Living Fossil, Metasequoia glyptostroboides [J]. Chin Bull Bot, 2010, 45(05): 604-608.
[12] Jingang Wang;Duo Wu;Huijuan Fu;Daidi Che*;Chuanping Yang*. Tissue Culture and Rapid Propagation of Oxalis bowiei [J]. Chin Bull Bot, 2010, 45(02): 233-235.
[13] Longbin Shen;Ruijun Duan;Jianchun Guo*;Shaoping Fu. Tissue Regeneration in Sesuvium portulacastrum [J]. Chin Bull Bot, 2010, 45(01): 91-94.
[14] Honghong Du, Yang Li, Dong Li, Shaojun Dai, Chuangdao Jiang, Lei Shi. Effects of light, temperature and pH on spore germination and early ga-metophytic development of Alsophila metteniana [J]. Biodiv Sci, 2009, 17(2): 182-187.
[15] Xiuming Wu;Chuanliang Liu;Chaojun Zhang;Fuguang Li* . Progress of Somatic Embryogenesis in Cotton [J]. Chin Bull Bot, 2008, 25(04): 469-475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yunsheng Wang;Hongwen Huang*;Ying Wang* . Genetics Research into Crop Domestication and Its Application in Soybean Breeding[J]. Chin Bull Bot, 2008, 25(02): 221 -229 .
[2] Lu Zuo-min. Study on the Drought Resistance of Artemisia ordosica with Different Ages[J]. Chin Bull Bot, 1993, 10(01): 58 -59 .
[3] Jing Jiang;Lei Wang;Liping Zhan;Yucheng Wang;Guifeng Liu;Chuanping Yang * . Expression of Choline Oxidase Gene in Transformed Populus simonii × P. nigra Improves Salt Stress Tolerance[J]. Chin Bull Bot, 2008, 25(01): 80 -84 .
[4] Zhang Bao-ze. Effects of Ca( NO3)2 and CaCl2 on the Salt Tolerance of Wheat Seedlings under Salt Stress[J]. Chin Bull Bot, 1997, 14(04): 48 -50 .
[5] JIAO Yu WANG Shi-Jun. The Leaf Epidermal Structures of Three Species ofBotrychiaceae from China[J]. Chin Bull Bot, 2000, 17(04): 352 -359 .
[6] Xueyi Qiao Hualei Wang Yuhai Guo. A Method for Stimulating Seed Germination and Haustorium Formation of Cistanche[J]. Chin Bull Bot, 2007, 24(04): 521 -525 .
[7] . [J]. Chin Bull Bot, 1994, 11(专辑): 48 .
[8] . [J]. Chin Bull Bot, 2007, 24(01): 123 .
[9] ZHAO Hong LI Ming-Yang PEI Yan DONG Yu-Mei. Studies on the Transfer of Herbicide-resistance Gene into Cultivated Wheat by Biolistics[J]. Chin Bull Bot, 2002, 19(04): 457 -461 .
[10] . [J]. Chin Bull Bot, 1994, 11(专辑): 70 .