植物学报 ›› 2017, Vol. 52 ›› Issue (6): 788-796.doi: 10.11983/CBB16164

• 专题论坛 • 上一篇    下一篇

单细胞组学技术及其在植物保卫细胞研究中的应用

牛艳丽, 柏胜龙, 王麒云, 刘凌云*()   

  1. 河南大学生命科学学院, 植物逆境生物学重点实验室, 开封 475004
  • 收稿日期:2016-08-08 接受日期:2017-03-06 出版日期:2017-11-01 发布日期:2018-02-22
  • 通讯作者: 刘凌云 E-mail:lingyunl@henu.edu.cn
  • 基金资助:
    河南省自然科学基金(No.162300410008)和河南省高等学校重点科研项目(No.15A180012)

Applications of Single-cell Technologies in Guard Cells

Niu Yanli, Bai Shenglong, Wang Qiyun, Liu Lingyun*()   

  1. Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
  • Received:2016-08-08 Accepted:2017-03-06 Online:2017-11-01 Published:2018-02-22
  • Contact: Liu Lingyun E-mail:lingyunl@henu.edu.cn

摘要:

单细胞组学技术在动物研究中已经得到广泛应用, 但在植物学领域尤其是保卫细胞研究中还处于起步阶段。由保卫细胞构成的气孔承担着植物生命过程中水分散发及气体交换大门的作用。将单细胞组学技术应用到保卫细胞功能解析中将有助于了解保卫细胞参与的基本生理过程。该文综述了植物单细胞组学技术的发展、保卫细胞研究现状及单细胞组学技术在植物保卫细胞研究中的初步应用, 为借助该技术解决植物生物学中保卫细胞发育、代谢及对环境胁迫响应等基本问题提供研究思路和方法。

关键词: 单细胞, 保卫细胞, 功能分析, 信号转导

Abstract:

Single-cell technologies have been used in an increasing number of animal studies, but the techniques have yet to be widely used in plants, especially in guard cells. Stomatal pores are formed by pairs of guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss. The application of single-cell technologies will be valuable for better understanding the underlying mechanisms of stomatal pores. In this review, we discuss single-cell technologies, current research and problems with guard cells and focus on the application of single-cell technologies to guard cells. Single-cell technologies may have potential to provide new perspectives for plant problems, such as development, metabolism and response to environmental stresses of guard cells.

Key words: single cell, guard cells, functional analysis, signaling

图1

单细胞分离方法(改自Gross et al., 2015)"

[1] 孟繁霞, 张蜀秋, 娄成后 (2000). 气孔功能的结构基础. 植物学通报 17, 27-33.
doi: 10.3969/j.issn.1674-3466.2000.01.004
[2] Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, Davies KA, Lau OS, Matos JL, Hachez C, Lanctot A, Vatén A, Birnbaum KD, Bergmann DC (2015). Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing pop- ulation.Dev Cell 33, 107-118.
doi: 10.1016/j.devcel.2015.01.025 pmid: 25850675
[3] Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FMW (2016). An improved procedure for isolation of high-quality RNA from nematode- infected Arabidopsis roots through laser capture microdissection.Plant Methods 12, 25.
doi: 10.1186/s13007-016-0123-9 pmid: 4847226
[4] Aubry S, Aresheva O, Reyna-Llorens I, Smith-Unna RD, Hibberd JM, Genty B (2016). A specific transcriptome signature for guard cells from the C4 plant Gynandropsis gynandra. Plant Physiol 170, 1345-1357.
[5] Barkla BJ, Vera-Estrella R (2015). Single cell-type compara- tive metabolomics of epidermal bladder cells from the hal- ophyte Mesembryanthemum crystallinum. Front Plant Sci 6, 435.
[6] Barkla BJ, Vera-Estrella R, Raymond C (2016). Single-cell- type quantitative proteomic and ionomic analysis of epi- dermal bladder cells from the halophyte model plant Mes- embryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biol 16, 110.
[7] Cápal P, Blavet N, Vrána J, Kubaláková M, Dole?el J (2015). Multiple displacement amplification of the DNA from single flow-sorted plant chromosome.Plant J 84, 838-844.
doi: 10.1111/tpj.13035
[8] Carter AD, Bonyadi R, Gifford ML (2013). The use of fluorescence-activated cell sorting in studying plant development and environmental responses.Int J Dev Biol 57, 545-552.
doi: 10.1387/ijdb.130195mg pmid: 24166437
[9] Dean FB, Hosono S, Fang LH, Wu XH, Faruqi AF, Bray- Ward P, Sun ZY, Zong QL, Du FY, Du J, Driscoll M, Song WM, Kingsmore SF, Egholm M, Lasken RS (2002). Comprehensive human genome amplification using multiple displacement amplification.Proc Natl Acad Sci USA 99, 5261-5266.
doi: 10.1073/pnas.082089499
[10] Deng CL, Bai LL, Li SF, Zhang YX, Li X, Chen YH, Wang RRC, Han FP, Hu ZM (2014). DOP-PCR based painting of rye chromosomes in a wheat background.Genome 57, 473-479.
doi: 10.1139/gen-2014-0110 pmid: 25429799
[11] Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004). ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells.J Exp Bot 55, 205-212.
[12] Dow GJ, Bergmann DC, Berry JA (2014). An integrated model of stomatal development and leaf physiology.New Phytol 201, 1218-1226.
doi: 10.1111/nph.12608 pmid: 24251982
[13] Efroni I, Birnbaum KD (2016). The potential of single-cell profiling in plants.Genome Biol 17, 65.
doi: 10.1186/s13059-016-0931-2 pmid: 4820866
[14] Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD (2016). Root regeneration triggers an embryo-like sequence guided by hormonal interactions.Cell 165, 1721-1733.
doi: 10.1016/j.cell.2016.04.046 pmid: 27212234
[15] Fritzsch FS, Dusny C, Frick O, Schmid A (2012). Single-cell analysis in biotechnology, systems biology, and biocatalysis.Annu Rev Chem Biomol Eng 3, 129-155.
doi: 10.1146/annurev-chembioeng-062011-081056 pmid: 22468600
[16] Fu YS, Li CM, Lu SJ, Zhou WX, Tang FC, Xie XS, Huang YY (2015). Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification.Proc Natl Acad Sci USA 112, 11923-11928.
doi: 10.1073/pnas.1513988112 pmid: 26340991
[17] Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T (2015). Direct metabolomics for plant cells by live single-cell mass spectrometry.Nat Protoc 10, 1445-1456.
doi: 10.1038/nprot.2015.084
[18] Grasso MS, Lintilhac PM (2016). Microbead encapsulation of living plant protoplasts: a new tool for the handling of single plant cells.Appl Plant Sci 4, 1500140.
doi: 10.3732/apps.1500140 pmid: 27213126
[19] Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015). Aquaporins contribute to ABA- triggered stomatal closure through OST1-mediated phosphorylation.Plant Cell 27, 1945-1954.
doi: 10.1105/tpc.15.00421 pmid: 26163575
[20] Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P (2015). Technologies for single-cell isolation.Int J Mol Sci 16, 16897-16919.
doi: 10.3390/ijms160816897 pmid: 4581176
[21] Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling- Carter L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA (2016). Tunable single-cell extraction for mole- cular analyses.Cell 166, 506-516.
doi: 10.1016/j.cell.2016.06.025 pmid: 27419874
[22] Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010). Expression profiling of tobacco leaf trichomes iden- tifies genes for biotic and abiotic stresses.Plant Cell Phy- siol 51, 1627-1637.
doi: 10.1093/pcp/pcq118 pmid: 20693332
[23] He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013). Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves.Plant Physiol 161, 1570-1583.
doi: 10.1104/pp.112.211623 pmid: 23341360
[24] Hossain MS, Joshi T, Stacey G (2015). System approaches to study root hairs as a single cell plant model: current status and future perspectives.Front Plant Sci 6, 363.
doi: 10.3389/fpls.2015.00363 pmid: 26042143
[25] Hou Y, Guo HH, Cao C, Li XL, Hu BQ, Zhu P, Wu XL, Wen L, Tang FC, Huang YY, Peng JR (2016). Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas.Cell Res 26, 304-319.
doi: 10.1038/cr.2016.23 pmid: 26902283
[26] Huang L, Ma F, Chapman A, Lu SJ, Xie XS (2015). Single- cell whole-genome amplification and sequencing: methodo- logy and applications.Annu Rev Genomics Hum Genet 16, 79-102.
doi: 10.1146/annurev-genom-090413-025352 pmid: 26077818
[27] Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B (2010). Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet 42, 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[28] Huang XH, Yang SH, Gong JY, Zhao Y, Feng Q, Gong H, Li WJ, Zhan QL, Cheng BY, Xia JH, Chen N, Hao ZN, Liu KY, Zhu CR, Huang T, Zhao Q, Zhang L, Fan DL, Zhou CC, Lu YQ, Weng QJ, Wang ZX, Li JJ, Han B (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis.Nat Commun 6, 6258.
doi: 10.1038/ncomms7258 pmid: 25651972
[29] Iyer-Pascuzzi AS, Benfey PN (2010). Fluorescence activa- ted cell sorting in plant developmental biology.Methods Mol Biol 655, 313-319.
doi: 10.1007/978-1-60761-765-5
[30] Jin XF, Wang RS, Zhu MM, Jeon BW, Albert R, Chen SX, Assmann SM (2013). Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. Plant Cell 25, 4789-4811.
doi: 10.1105/tpc.113.119800 pmid: 24368793
[31] Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S (2013). Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis.Plant Cell 25, 558-571.
doi: 10.1105/tpc.112.105049
[32] Kehr J (2003). Single cell technology.Curr Opin Plant Biol 6, 617-621.
doi: 10.1016/j.pbi.2003.09.002
[33] Lau OS, Davies KA, Chang J, Adrian J, Rowe MH, Ballenger CE, Bergmann DC (2014). Direct roles of SPEECHLESS in the specification of stomatal self-rene- wing cells.Science 345, 1605-1609.
doi: 10.1126/science.1256888 pmid: 25190717
[34] Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abs- cisic acid hypersensitive protein phosphatase 2C mutant.Plant Cell 16, 596-615.
doi: 10.1105/tpc.019000 pmid: 14973164
[35] Li X, Li L, Yan JB (2015). Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize.Nat Commun 6, 6648.
doi: 10.1038/ncomms7648 pmid: 25800954
[36] Ludwig Y, Hochholdinger F (2014). Laser microdissection of plant cells.Methods Mol Biol 1080, 249-258.
doi: 10.1007/978-1-62703-643-6
[37] Maisch J, Kreppenhofer K, Büchler S, Merle C, Sobich S, G?rling B, Luy B, Ahrens R, Guber AE, Nick P (2016). Time-resolved NMR metabolomics of plant cells based on a microfluidic chip.J Plant Physiol 200, 28-34.
doi: 10.1016/j.jplph.2016.06.004 pmid: 27318870
[38] Matrosova A, Bogireddi H, Mateo-Pe?as A, Hashimoto- Sugimoto M, Iba K, Schroeder JI, Israelsson-Nord- str?m M (2015). The HT1 protein kinase is essential for red light-induced stomatal opening and genetically inter- acts with OST1 in red light and CO2 -induced stomatal movement responses.New Phytol 208, 1126-1137.
doi: 10.1111/nph.13566
[39] Misra BB, Acharya BR, Granot D, Assmann SM, Chen SX (2015a). The guard cell metabolome: functions in stomatal movement and global food security.Front Plant Sci 6, 334.
doi: 10.3389/fpls.2015.00334 pmid: 4436583
[40] Misra BB, Assmann SM, Chen SX (2014). Plant single-cell and single-cell-type metabolomics.Trends Plant Sci 19, 637-646.
doi: 10.1016/j.tplants.2014.05.005 pmid: 24946988
[41] Misra BB, de Armas E, Tong ZH, Chen SX (2015b). Metabolomic responses of guard cells and mesophyll cells to Bicarbonate.PLoS One 10, e0144206.
doi: 10.1371/journal.pone.0144206 pmid: 4671721
[42] Mustroph A, Zanetti ME, Girke T, Bailey-Serres J (2013). Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification.Methods Mol Biol 959, 277-302.
doi: 10.1007/978-1-62703-221-6
[43] Mustroph A, Zanetti ME, Jang CJH, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis.Proc Natl Acad Sci USA 106, 18843-18848.
doi: 10.4161/psb.5.3.11187 pmid: 19843695
[44] Ou XB, Gan Y, Chen PL, Qiu MQ, Jiang K, Wang GX (2014). Stomata prioritize their responses to multiple biotic and abiotic signal inputs.PLoS One 9, e101587.
doi: 10.1371/journal.pone.0101587 pmid: 4086820
[45] Pillitteri LJ, Torii KU (2012). Mechanisms of stomatal development.Annu Rev Plant Biol 63, 591-614.
doi: 10.1146/annurev-arplant-042811-105451
[46] Schad M, Mungur R, Fiehn O, Kehr J (2005). Metabolic profiling of laser microdissected vascular bundles ofArabi- dopsis thaliana. Plant Methods 1, 2.
[47] Sturtevant D, Lee YJ, Chapman KD (2016). Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 37, 53-60.
doi: 10.1016/j.copbio.2015.10.004 pmid: 26613199
[48] Sun QX, Liu J, Zhang Q, Qing XH, Dobson G, Li XZ, Qi BX (2013). Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from Phytophthora infestans. Appl Microbiol Biotechnol 97, 7689-7697.
[49] Telenius H, Carter NP, Bebb CE, Nordenskj?ld M, Ponder BAJ, Tunnacliffe A (1992). Degenerate oligonucleotide- primed PCR: general amplification of target DNA by a single degenerate primer.Genomics 13, 718-725.
doi: 10.1016/0888-7543(92)90147-K pmid: 1639399
[50] Thakare D, Yang RL, Steffen JG, Zhan JP, Wang DF, Clark RM, Wang XF, Yadegari R (2014). RNA-seq analysis of laser-capture microdissected cells of the developing central starchy endosperm of maize.Genom Data 2, 242-245.
doi: 10.1016/j.gdata.2014.07.003 pmid: 4535972
[51] Wang RS, Pandey S, Li S, Gookin TE, Zhao ZX, Albert R, Assmann SM (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells.BMC Genomics 12, 216.
doi: 10.1186/1471-2164-12-216 pmid: 3115880
[52] Yang YZ, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008). Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool.Plant Methods 4, 6.
doi: 10.1186/1746-4811-4-6 pmid: 18284694
[53] Zhao ZX, Stanley BA, Zhang W, Assmann SM (2010). ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective.J Proteome Res 9, 1637-1647.
doi: 10.1021/pr901011h
[54] Zhao ZX, Zhang W, Stanley BA, Assmann SM (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20, 3210-3226.
[55] Zhu MM, Dai SJ, McClung S, Yan XF, Chen SX (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 8, 752-766.
[56] Zhu YD, Li H, Bhatti S, Zhou SP, Yang Y, Fish T, Thannhauser TW (2016). Development of a laser capture microscope-based single-cell-type proteomics tool for study- ing proteomes of individual cell layers of plant roots.Hortic Res 3, 16026.
doi: 10.1038/hortres.2016.26 pmid: 4888759
[57] Zong CH, Lu SJ, Chapman AR, Xie XS (2012). Genome- wide detection of single-nucleotide and copy-number variations of a single human cell.Science 338, 1622-1626.
doi: 10.1126/science.1229164 pmid: 23258894
[1] 杨程惠子 唐先宇 李威 夏石头. NLR及其在植物抗病中的调控作用[J]. 植物学报, 2020, 55(4): 0-0.
[2] 张娜,刘秀霞,陈学森,吴树敬. 基于转录组分析鉴定苹果茉莉素响应基因[J]. 植物学报, 2019, 54(6): 733-743.
[3] 胡孔琴, 丁兆军. 非TIR1受体依赖型激活生长素信号的新机制[J]. 植物学报, 2019, 54(3): 293-295.
[4] 王雅静, 张欣莹, 黄桂荣, 刘晓英, 郭瑞, 顾峰雪, 钟秀丽, 梅旭荣. 植物磷脂酸的特性及其在ABA诱导气孔运动中的作用[J]. 植物学报, 2019, 54(2): 245-254.
[5] 张玲玲, 吴丹, 赵子捷, 赵立群. 植物一氧化氮信号分子的研究进展[J]. 植物学报, 2017, 52(3): 337-345.
[6] 景艳军, 林荣呈. 我国植物光信号转导研究进展概述[J]. 植物学报, 2017, 52(3): 257-270.
[7] 曾后清, 张亚仙, 汪尚, 张夏俊, 王慧中, 杜立群. 植物钙/钙调素介导的信号转导系统[J]. 植物学报, 2016, 51(5): 705-723.
[8] 彭雄波, 孙蒙祥. 中国科学家在植物受精过程中雌雄配子体信号识别机制研究中取得突破性进展[J]. 植物学报, 2016, 51(2): 145-147.
[9] 于倩倩, 孔祥培, 丁兆军. 中国科学家在生长素信号转导领域取得突破性研究进展[J]. 植物学报, 2015, 50(5): 535-537.
[10] 王鹤飞, 李雪, 董玲丽, 张俊成, 赵茂林, 邢国珍, 王道文, 郑文明. 小麦受体样蛋白激酶及其衍生蛋白的研究进展[J]. 植物学报, 2015, 50(2): 255-262.
[11] 赵翔, 赵青平, 杨煦, 慕世超, 张骁. 向光素调节植物向光性及其与光敏色素/隐花色素的相互关系[J]. 植物学报, 2015, 50(1): 122-132.
[12] 方荣俊, 赵华, 廖永辉, 汤程贻, 吴凤瑶, 朱煜, 庞延军, 陆桂华, 王小明, 杨荣武, 戚金亮, 杨永华. 乙烯对植物次生代谢产物合成的双重调控效应[J]. 植物学报, 2014, 49(5): 626-639.
[13] 王棚涛, 赵晶, 余欢欢. 气孔运动中的活性氧信号[J]. 植物学报, 2014, 49(4): 490-503.
[14] 陈莎莎, 贺转转, 姜生秀, 邢佳佳, 吕秀云, 兰海燕. 藜钙依赖磷酸激酶基因CaCPK的克隆及胁迫表达[J]. 植物学报, 2014, 49(2): 139-149.
[15] 赵林姝, 刘录祥, 古佳玉, 郭会君, 李军辉, 谢永盾, 赵世荣. 一种小麦叶片气孔保卫细胞观察样品的制备方法[J]. 植物学报, 2014, 49(1): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童哲编译. 赤霉素的生物化学和分子生物学国际研讨会[J]. 植物学报, 2000, 17(06): 572 .
[2] 赵玉锦 王台 童哲. 一种简单的分离提取水稻叶片中IAA、ABA和GAs的方法[J]. 植物学报, 1994, 11(04): 52 -55 .
[3] 倪健 吴继友. 利用植物叶面反射光谱探测隐伏地下矿产[J]. 植物学报, 1997, 14(01): 36 -40 .
[4] 郭宏波 柯卫东 李双梅 彭静. 野生莲资源的RAPD 分析[J]. 植物学报, 2005, 22(增刊): 64 -67 .
[5] 林鹏, 卢昌义, 王恭礼, 陈焕雄. 海南岛河港海莲红树林凋落物动态的研究[J]. 植物生态学报, 1990, 14(1): 69 -74 .
[6] 马洋, 王雪芹, 张波, 刘进辉, 韩章勇, 唐钢梁. 风蚀和沙埋对塔克拉玛干沙漠南缘骆驼刺水分和光合作用的影响[J]. 植物生态学报, 2014, 38(5): 491 -498 .
[7] 捷明. 国际应用系统分析研究所的生物圈项目[J]. 植物生态学报, 1990, 14(1): 93 -94 .
[8] 陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展[J]. 植物生态学报, 2016, 40(9): 958 -968 .
[9] 李凡, 张焕君, 吕振波, 徐炳庆, 郑亮. 莱州湾游泳动物群落种类组成及多样性[J]. 生物多样性, 2013, 21(5): 537 -546 .
[10] 周春发, 周大庆, 孔祥坤, 邓文洪. 四种同域分布洞巢鸟的巢址特征比较[J]. 生物多样性, 2012, 20(6): 716 -724 .