植物学报 ›› 2019, Vol. 54 ›› Issue (1): 4-8.doi: 10.11983/CBB18212

• 热点评 • 上一篇    下一篇

虾青素功能米: 生物强化新思路, 优质米培育新资源


  1. 中国水稻研究所水稻生物学国家重点实验室, 杭州 311401
  • 收稿日期:2018-10-11 接受日期:2018-12-10 出版日期:2019-01-01 发布日期:2019-05-17
  • 通讯作者: 朱丽,钱前 E-mail:qianqian188@hotmail.com

Astaxanthin Functional Rice: New Idea of Biofortification, New Perspectives for High-quality Rice Breeding

Zhu Li(),Qian Qian()   

  1. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
  • Received:2018-10-11 Accepted:2018-12-10 Online:2019-01-01 Published:2019-05-17
  • Contact: Zhu Li,Qian Qian E-mail:qianqian188@hotmail.com


虾青素是一种红色的类酮胡萝卜素, 与其它类胡萝卜素或维生素E相比具有更强的抗氧化活性, 在延缓衰老、提高免疫力、防治糖尿病和心血管疾病等方面均有功效, 目前已广泛应用于制药、保健和日化等行业。但其合成必需基因BKT仅存在于部分微藻、细菌和酵母中, 大多数高等动、植物中并不存在。人类仅可以从三文鱼、贝类和鳟鱼等海洋生物中少量摄取虾青素。水稻(Oryza sativa)作为世界上最重要的粮食作物, 是全世界近1/2 (我国2/3)人口的主粮。稻米中缺乏类胡萝卜素前体, 因此无法自主合成虾青素, 且多年来在水稻中人工合成虾青素的尝试均未获得成功。近期, 中国科学家首次利用自创的多基因垛叠表达系统, 成功获得了富含β-胡萝卜素的黄金米, 富含角黄素的角黄素米和富含虾青素的赤晶米, 实现了从前体、中间产物到终产物的精准合成。

关键词: 虾青素, 生物强化, 多基因转化, 水稻


Astaxanthin, a red-colored ketocarotenoid, has stronger antioxidant activity than other carotenoids or vitamin E. It has been reported in anti-aging, improving immunity, preventing and treating several diseases and widely used in pharmaceuticals, nutraceuticals, and the aquaculture industry. However, β-carotene ketolase genes exist only in some species of microalgae, bacteria and yeast and not in most higher animals and plants. Humans consume astaxanthin mainly from some seafood, such as salmon, shellfish, and trout. Rice, as the most important food crop in the world, is the main grain of nearly half of the world and two thirds of China’s population. However, rice lacks carotenoid precursors, and the engineered biosynthesis of astaxanthin in rice has not been successful. Recently, Chinese scientists successfully engineered sophisticated β-carotene, keratin and astaxanthin biosynthesis in rice endosperm by the self-made multi-gene stacking expression system, which achieved precise synthesis from precursors and intermediate to final products regulated by a complex metabolic network.

Key words: astaxanthin, biofortification, multiple gene transformation, rice

1 李立科, 史良琴, 刘衡, 罗启慧, 黄超, 刘文涛, 陈晓林, 陈正礼 ( 2017). 左旋多巴和氯碘羟喹治疗对帕金森病猕猴血清抗氧化能力的影响. 浙江大学学报(农业与生命科学版) 43, 371-376.
doi: 10.3785/j.issn.1008-9209.2016.05.251
2 刘海英, 仇农学, 姚瑞祺, 穆伟航 ( 2009). 我国86种药食两用植物的抗氧化活性及其与总酚的相关性分析. 西北农林科技大学学报(自然科学版) 37(2), 173-180.
3 魏安池, 代红丽, 周瑞宝 ( 2003). 56种植物原料抗氧化性能研究. 粮食与油脂 ( 7), 11-12.
doi: 10.3969/j.issn.1008-9578.2003.07.004
4 薛立英, 高丽, 秦雪梅, 杜冠华, 周玉枝 ( 2017). 药食同源中药抗衰老研究进展. 食品科学 38, 302-309.
5 袁超, 金征宇 ( 2010). 虾青素的热稳定性及分解动力学. 天然产物研究与开发 22, 1085-1087.
doi: 10.3969/j.issn.1001-6880.2010.06.042
6 朱丽, 钱前 ( 2017). 突破复杂性状多基因转化技术壁垒, 首创胚乳花青素高积累的水稻新种质. 植物学报 52, 539-542.
doi: 10.11983/CBB17126
7 Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N ( 2018). Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 14, 47-58.
doi: 10.1016/j.redox.2017.08.009 pmid: 5583394
8 Bai C, Berman J, Farre G, Capell T, Sandmann G, Christou P, Zhu CF ( 2017). Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity. Transgenic Res 26, 13-23.
9 Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu CF ( 2016). Bottlenecks in carotenoid bio- synthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnol J 14, 195-205.
doi: 10.1111/pbi.12373 pmid: 25857664
10 Bj?rklund G, Chirumbolo S ( 2017). Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 33, 311-321.
doi: 10.1016/j.nut.2016.07.018 pmid: 27746034
11 Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H, Gellynck X, Lambert W, Stove C, Van Der Straeten D ( 2015). Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33, 1076-1078.
doi: 10.1038/nbt.3358 pmid: 26389575
12 Bouis HE, Saltzman A ( 2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12, 49-58.
doi: 10.1016/j.gfs.2017.01.009 pmid: 5439484
13 Chen GQ, Wang BB, Han DX, Sommerfeld M, Lu YH, Chen F, Hu Q ( 2015). Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis( Chlorophyceae). Plant J 81, 95-107.
14 Coruzzi G, Broglie R, Edwards C, Chua NH ( 1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1, 5- bisphosphate carboxylase. EMBO J 3, 1671-1679.
doi: 10.1002/j.1460-2075.1984.tb02031.x pmid: 6479146
15 Cunningham FX Jr, Gantt E ( 2005). A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis.Plant J 41, 478-492.
doi: 10.1111/j.1365-313X.2004.02309.x pmid: 15659105
16 Farhi M, Marhevka E, Ben-Ari J, Algamas-Dimantov A, Liang Z, Zeevi V, Edelbaum O, Spitzer-Rimon B, Abeliovich H, Schwartz B, Tzfira T, Vainstein A ( 2011). Generation of the potent anti-malarial drug artemisinin in tobacco. Nat Biotechnol 29, 1072-1074.
doi: 10.1038/nbt.2054 pmid: 22158354
17 Franco-Iborra S, Vila M, Perier C ( 2018). Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s Disease and Huntington’s Disease. Front Neu- rosci 12, 342.
18 Gil-Mohapel J, Brocardo PS, Christie BR ( 2014). The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15, 454-468.
doi: 10.2174/1389450115666140115113734 pmid: 24428525
19 Giuliano G ( 2014). Plant carotenoids: genomics meets multi- gene engineering. Curr Opin Plant Biol 19, 111-117.
doi: 10.1016/j.pbi.2014.05.006 pmid: 24912125
20 Hamilton C, Frary A, Lewis C, Tanksley SD ( 1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93, 9975-9979.
doi: 10.1073/pnas.93.18.9975 pmid: 8790442
21 Harman D ( 1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300.
22 Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM ( 2006). Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46, 185-196.
doi: 10.1080/10408690590957188 pmid: 16431409
23 Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA ( 2016). Epigenetic treatment of neurodegenerative disorders: Alzheimer and Parkinson diseases. Drug Dev Res 77, 109-123.
doi: 10.1002/ddr.21294 pmid: 26899010
24 Kim H, Perentis RJ, Caldwell GA, Caldwell KA ( 2018). Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C.elegans Parkinson’s models.. Cell Death Dis 9, 555.
doi: 10.1038/s41419-018-0619-5 pmid: 29748634
25 Li KT, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, Ma QX, Zhang P, Fitzpatrick TB, Gruissem W, Vanderschuren H ( 2015). Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat Biotechnol 33, 1029-1032.
doi: 10.1038/nbt.3318 pmid: 26448082
26 Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D ( 1999). Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96, 6535-6540.
doi: 10.1073/pnas.96.11.6535 pmid: 10339623
27 Macedo D, Jardim C, Figueira I, Almeida AF, McDougall GJ, Stewart D, Yuste JE, Tomás-Barberán FA, Tenreiro S, Outeiro TF, Santos CN ( 2018). ( Poly) phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci Rep 8, 6965.
doi: 10.1038/s41598-018-25118-z
28 Naguib YM ( 2000). Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48, 1150-1154.
29 Noctor G, Lelarge-Trouverie C, Mhamdi A ( 2015). The met- abolomics of oxidative stress. Phytochemistry 112, 33-53.
30 Nogueira M, Enfissi EMA, Valenzuela MEM, Menard GN, Driller RL, Eastmond PJ, Schuch W, Sandmann G, Fraser PD ( 2017). Engineering of tomato for the sustainable production of ketocarotenoids and its evaluation in aquaculture feed. Proc Natl Acad Sci USA 114, 10876-10881.
doi: 10.1073/pnas.1708349114
31 Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R ( 2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23, 482-487.
doi: 10.1038/nbt1082 pmid: 15793573
32 Pashkow FJ, Watumull DG, Campbell CL ( 2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101, S58-S68.
doi: 10.1016/j.amjcard.2008.02.010 pmid: 18474276
33 Salim S ( 2017). Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360, 201-205.
doi: 10.1124/jpet.116.237503 pmid: 27754930
34 Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y ( 2013). RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41, D1206-D1213.
doi: 10.1093/nar/gks1125 pmid: 23180765
35 Sorce S, Krause KH ( 2009). NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11, 2481-2504.
doi: 10.1089/ars.2009.2578 pmid: 19309263
36 Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJJ ( 2017). Microbial antioxidant defense enzymes. Microb Pathog 110, 56-65.
37 Sun TH, Yuan H, Cao HB, Yazdani M, Tadmor Y, Li L ( 2018). Carotenoid metabolism in plants: the role of plastids. Mol Plant 11, 58-74.
38 Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J ( 2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84.
39 Wong CC, Li HB, Cheng KW, Chen F ( 2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97, 705-711.
doi: 10.1016/j.foodchem.2005.05.049
40 Zheng J, Winderickx J, Franssens V, Liu BD ( 2018). A mitochondria-associated oxidative stress perspective on Huntington’s Disease. Front Mol Neurosci 11, 329.
41 Zhou XJ, Welsch R, Yang Y, álvarez D, Riediger M, Yuan H, Fish T, Liu JP, Thannhauser TW, Li L ( 2015). Arabidopsis OR proteins are the major posttranscriptional re- gulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci USA 112, 3558-3563.
doi: 10.1073/pnas.1420831112 pmid: 25675505
42 Zhu CF, Naqvi S, Capell T, Christou P ( 2009). Metabolic engineering of ketocarotenoid biosynthesis in higher pl- ants. Arch Biochem Biophys 483, 182-190.
doi: 10.1016/j.abb.2008.10.029 pmid: 18992217
43 Zhu QL, Yu SZ, Zeng DC, Liu HM, Wang HC, Yang ZF, Xie XR, Shen RX, Tan JT, Li HY, Zhao XC, Zhang QY, Chen YL, Guo JX, Chen LT, Liu YG ( 2017). Development of “Purple Endosperm Rice” by engineering anthocyanin bio- synthesis in the endosperm with a high-efficiency trans- gene stacking system. Mol Plant 10, 918-929.
doi: 10.1016/j.molp.2017.05.008 pmid: 28666688
44 Zhu QL, Zeng DC, Yu SZ, Cui CJ, Li JM, Li HY, Chen JY, Zhang RZ, Zhao XC, Chen LT, Liu YG ( 2018). From Golden Rice to aSTARice: bioengineering astaxanthin bio- synthesis in rice endosperm. Mol Plant 11, 1440-1448.
doi: 10.1016/j.molp.2018.09.007
[1] 田怀东 李菁 田保华 牛鹏飞 李珍 岳忠孝 屈雅娟 姜建芳 王广元 岑慧慧 李南 闫枫. 水稻两性生殖细胞的N-甲基-N-亚硝基脲诱变方法[J]. 植物学报, 2019, 54(5): 0-0.
[2] 王跃星 饶玉春 焦然 周纯 林晗 徐娜 胡娟 胡萍 吴先美. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 0-0.
[3] 刘进 姚晓云 余丽琴 李慧 周慧颖 王嘉宇 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析[J]. 植物学报, 2019, 54(4): 0-0.
[4] 徐云远 种康. 利用低温水浴鉴定水稻苗期耐冷性[J]. 植物学报, 2019, 54(4): 0-0.
[5] 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 0-0.
[6] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报, 2019, 54(3): 285-287.
[7] 栗露露,殷文超,牛梅,孟文静,张晓星,童红宁. 油菜素甾醇调控水稻盐胁迫应答的作用研究[J]. 植物学报, 2019, 54(2): 185-193.
[8] 叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展[J]. 植物学报, 2019, 54(2): 277-283.
[9] 陈琳,林焱,陈鹏飞,王绍华,丁艳锋. 水稻响应缺铁的韧皮部汁液蛋白质组学分析[J]. 植物学报, 2019, 54(2): 194-207.
[10] 薛治慧, 种康. 中国科学家在杂种F1克隆繁殖研究领域取得突破性进展[J]. 植物学报, 2019, 54(1): 1-3.
[11] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报, 2018, 53(6): 848-855.
[12] 鲁丹, 王丽, 宋凡, 陶菊红, 张大兵, 袁政. 水稻OsJMJ718基因可选择性多聚腺苷酸化序列的 克隆及生殖发育期表达模式[J]. 植物学报, 2018, 53(5): 594-602.
[13] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
[14] 黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53(4): 451-455.
[15] 马路, 方媛, 肖飒清, 周纯, 金哲伦, 叶雯澜, 饶玉春. 水稻条斑病抗性QTL的挖掘及相关基因的表达[J]. 植物学报, 2018, 53(4): 468-476.
Full text



[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. [J]. Journal of Systematics and Evolution, 2016, 54(4): 277 -306 .
[2] . [J]. Journal of Integrative Plant Biology, 2018, 60(7): 530 -535 .
[3] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2): 171 -179 .
[4] 王雨, 张会勇, 项鹏, 叶又茵, 林更铭, 杨清良, 林茂. 颗石藻颗石粒形态的原子力显微观测方法: 以赫氏艾密里藻为例[J]. 生物多样性, 2016, 24(7): 847 -854 .
[5] ZHANG Cheng Yi, YU Fei Hai, DONG Ming. Effects of Sand Burial on the Survival, Growth, and Biomass Allocation in Semi-shrub Hedysarum laeve Seedlings[J]. Journal of Integrative Plant Biology, 2002, 44(3): 337 -343 .
[6] 谭英1、2, 王智1、3, 隋学艺1、4, 胡光万1. 单种属弥勒苣苔属系统位置研究:基于分子和细胞学数据[J]. Plant Diversity, 2011, 33(5): 465 -476 .
[7] 夏冰, 兰涛, 贺善安. 马尾松直径生长与气候的非线性响应函数[J]. 植物生态学报, 1996, 20(1): 51 -56 .
[8] Fu Keh-chi. Study on the Root Qualities of the Cultivated Chinese Liquorice (Glycyrrhiza uralensis Fisch.)[J]. Journal of Integrative Plant Biology, 1974, 16(4): .
[9] 岳明. 陕北南部侧柏林演替时期的划分及其特征[J]. 植物生态学报, 1998, 22(4): 327 -335 .
[10] 沈泽昊, 方精云. 基于种群分布地形格局的两种水青冈生态位比较研究[J]. 植物生态学报, 2001, 25(4): 392 -398 .