Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (6): 873-877.DOI: 10.11983/CBB24163 cstr: 32102.14.CBB24163
• SPOTLIGHTS • Previous Articles Next Articles
Ruifeng Yao1,*(), Daoxin Xie2,*(
)
Received:
2024-10-28
Accepted:
2024-11-02
Online:
2024-11-10
Published:
2024-11-04
Contact:
*E-mail: daoxinlab@tsinghua.edu.cn;ryao@hnu.edu.cn
Ruifeng Yao, Daoxin Xie. Activation and Termination of Strigolactone Signal Perception in Rice[J]. Chinese Bulletin of Botany, 2024, 59(6): 873-877.
Figure 1 Model of activation and termination of strigolactone perception in rice Under nitrogen deficiency, rice induces the biosynthesis of strigolactone (SL), which binds to and induces a conformational change in the receptor D14 from an "open" to a "closed" pocket. This forms a complex with the F-box protein D3 and the transcriptional repressor D53, promoting the ubiquitination and degradation of D53, thereby activating SL signal transduction. Concurrently, nitrogen limitation induces phosphorylation of the N-terminal disordered region (NTD) of D14, reducing its ubiquitination and degradation, and further enhancing SL perception. Through these two synergistic mechanisms, low nitrogen signaling ensures the activation of SL signal transduction, inhibiting rice tillering. The SL-triggered D14-D3 interaction also promotes the ubiquitination and degradation of D14, thus mediating the termination of SL signal transduction.
[1] |
Chen JM, Shukla D (2023). Effect of histidine covalent modification on strigolactone receptor activation and selectivity. Biophys J 122, 1219-1228.
DOI PMID |
[2] | Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014). Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134-1150. |
[3] |
de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD (2016). An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12, 787-794.
DOI PMID |
[4] | Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008). Strigolactone inhibition of shoot branching. Nature 455, 189-194. |
[5] | Hu QL, He YJ, Wang L, Liu SM, Meng XB, Liu GF, Jing YH, Chen MJ, Song XG, Jiang L, Yu H, Wang B, Li JY (2017). DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone- dependent degradation in rice. Front Plant Sci 8, 1935. |
[6] | Hu QL, Liu HH, He YJ, Hao YR, Yan JJ, Liu SM, Huang XH, Yan ZY, Zhang DH, Ban XW, Zhang H, Li QQ, Zhang JK, Xin PY, Jing YH, Kou LQ, Sang DJ, Wang YH, Wang YC, Meng XB, Fu XD, Chu JF, Wang B, Li JY (2024). Regulatory mechanisms of strigolactone perception in rice. Cell https://doi.org/10.1016/j.cell.2024.10.009. |
[7] | Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu H E, Wang YH, Li JY (2013). DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature 504, 401-405. |
[8] | Shabek N, Ticchiarelli F, Mao HB, Hinds TR, Leyser O, Zheng N (2018). Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signaling. Nature 563, 652-656. |
[9] | Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200. |
[10] |
Uraguchi D, Kuwata K, Hijikata Y, Yamaguchi R, Imaizumi H, Am S, Rakers C, Mori N, Akiyama K, Irle S, McCourt P, Kinoshita T, Ooi T, Tsuchiya Y (2018). A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica. Science 362, 1301-1305.
DOI PMID |
[11] |
Wang B, Smith SM, Li JY (2018). Genetic regulation of shoot architecture. Annu Rev Plant Biol 69, 437-468.
DOI PMID |
[12] |
Wang DW, Pang ZL, Yu HY, Thiombiano B, Walmsley A, Yu SY, Zhang YY, Wei T, Liang L, Wang J, Wen X, Bouwmeester HJ, Yao RF, Xi Z (2022). Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nat Commun 13, 3987.
DOI PMID |
[13] | Wang L, Wang B, Yu H, Guo HY, Lin T, Kou LQ, Wang AQ, Shao N, Ma HY, Xiong GS, Li XQ, Yang J, Chu JF, Li JY (2020a). Transcriptional regulation of strigolactone signaling in Arabidopsis. Nature 583, 277-281. |
[14] | Wang YX, Shang LG, Yu H, Zeng LJ, Hu J, Ni S, Rao YC, Li SF, Chu JF, Meng XB, Wang L, Hu P, Yan JJ, Kang SJ, Qu MH, Lin H, Wang T, Wang Q, Hu XM, Chen HQ, Wang B, Gao ZY, Guo LB, Zeng DL, Zhu XD, Xiong GS, Li JY, Qian Q (2020b). A strigolactone biosynthesis gene contributed to the Green Revolution in rice. Mol Plant 13, 923-932. |
[15] | Yao RF, Ming ZH, Yan LM, Li SH, Wang F, Ma S, Yu CT, Yang M, Chen L, Chen LH, Li YW, Yan C, Miao D, Sun ZY, Yan JB, Sun YN, Wang L, Chu JF, Fan SL, He W, Deng HT, Nan FJ, Li JY, Rao ZH, Lou ZY, Xie DX (2016). DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469-473. |
[16] |
Yao RF, Wang L, Li YW, Chen L, Li SH, Du XX, Wang B, Yan JB, Li JY, Xie DX (2018). Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. J Exp Bot 69, 2355-2365.
DOI PMID |
[17] |
Yu HQ, Matouschek A (2017). Recognition of client proteins by the proteasome. Annu Rev Biophys 46, 149-173.
DOI PMID |
[18] |
Yuan K, Zhang H, Yu CJ, Luo N, Yan JJ, Zheng S, Hu QL, Zhang DH, Kou LQ, Meng XB, Jing YH, Chen MJ, Ban XW, Yan ZY, Lu ZF, Wu J, Zhao Y, Liang Y, Wang YH, Xiong GS, Chu JF, Wang ET, Li JY, Wang B (2023). Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. Mol Plant 16, 1811-1831.
DOI PMID |
[19] | Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, Shabek N, Wu FQ, Mao HB, Dong W, Gan L, Ma WW, Gao H, Chen J, Yang C, Wang D, Tan JJ, Zhang X, Guo XP, Wang JL, Jiang L, Liu X, Chen WQ, Chu JF, Yan CY, Ueno K, Ito S, Asami T, Cheng ZJ, Wang J, Lei CL, Zhai HQ, Wu CY, Wang HY, Zheng N, Wan JM (2013). D14-SCF (D3)-dependent degradation of D53 regulates strigolactone signaling. Nature 504, 406-410. |
[1] | Jianguo Li, Yi Zhang, Wenjun Zhang. Iron Plaque Formation and Its Effect on Phosphorus Absorption in Rice Roots #br# [J]. Chinese Bulletin of Botany, 2025, 60(1): 1-10. |
[2] | Jinjin Lian, Luyao Tang, Yinuo Zhang, Jiaxing Zheng, Chaoyu Zhu, Yuhan Ye, Yuexing Wang, Wennan Shang, Zhenghao Fu, Xinxuan Xu, Richeng Wu, Mei Lu, Changchun Wang, Yuchun Rao. Genetic Locus Mining and Candidate Gene Analysis of Antioxidant Traits in Rice [J]. Chinese Bulletin of Botany, 2024, 59(5): 738-751. |
[3] | Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress [J]. Chinese Bulletin of Botany, 2024, 59(4): 574-584. |
[4] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
[5] | Chaoyu Zhu, Chengxiang Hu, Zhenan Zhu, Zhining Zhang, Lihai Wang, Jun Chen, Sanfeng Li, Jinjin Lian, Luyao Tang, Qianqian Zhong, Wenjing Yin, Yuexing Wang, Yuchun Rao. Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis [J]. Chinese Bulletin of Botany, 2024, 59(2): 217-230. |
[6] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[7] | Yanli Fang, Chuanyu Tian, Ruyi Su, Yapei Liu, Chunlian Wang, Xifeng Chen, Wei Guo, Zhiyuan Ji. Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak [J]. Chinese Bulletin of Botany, 2024, 59(1): 1-9. |
[8] | Tian Chuanyu, Fang Yanli, Shen Qing, Wang Hongjie, Chen Xifeng, Guo Wei, Zhao Kaijun, Wang Chunlian, Ji Zhiyuan. Genotypic Diversity and Pathogenisity of Xanthomonas oryzae pv. oryzae Isolated from Southern China in 2019-2021 [J]. Chinese Bulletin of Botany, 2023, 58(5): 743-749. |
[9] | Dai Ruohui, Qian Xinyu, Sun Jinglei, Lu Tao, Jia Qiwei, Lu Tianqi, Lu Mei, Rao Yuchun. Research Progress on the Mechanisms of Leaf Color Regulation and Related Genes in Rice [J]. Chinese Bulletin of Botany, 2023, 58(5): 799-812. |
[10] | Wang Wenguang, Wang Yonghong. Century-old Hypothesis Finally Revealed: the Shuttling LAZY Proteins “Awaken” Gravity Sensing in Planta [J]. Chinese Bulletin of Botany, 2023, 58(5): 677-681. |
[11] | Shang Sun, Yingying Hu, Yangshuo Han, Chao Xue, Zhiyun Gong. Double-stranded Labelled Oligo-FISH in Rice Chromosomes [J]. Chinese Bulletin of Botany, 2023, 58(3): 433-439. |
[12] | Jiayi Jin, Yiting Luo, Huimin Yang, Tao Lu, Hanfei Ye, Jiyi Xie, Kexin Wang, Qianyu Chen, Yuan Fang, Yuexing Wang, Yuchun Rao. QTL Mapping and Expression Analysis on Candidate Genes Related to Chlorophyll Content in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 394-403. |
[13] | Yuping Yan, Xiaoqi Yu, Deyong Ren, Qian Qian. Genetic Mechanisms and Breeding Utilization of Grain Number Per Panicle in Rice [J]. Chinese Bulletin of Botany, 2023, 58(3): 359-372. |
[14] | Yuqiang Liu, Jianmin Wan. The Host Controls the Protein Level of Insect Effectors to Balance Immunity and Growth [J]. Chinese Bulletin of Botany, 2023, 58(3): 353-355. |
[15] | Qi Wang, Yunzhe Wu, Xueying Liu, Lili Sun, Hong Liao, Xiangdong Fu. The Rice Receptor-like Kinases Function as Key Regulators of Plant Development and Adaptation to the Environment [J]. Chinese Bulletin of Botany, 2023, 58(2): 199-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||