Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (2): 217-226.DOI: 10.11983/CBB18222
Special Issue: 逆境生物学专辑 (2019年54卷2期)
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Wenping Hua1,2,Chen Chen3,4,Yuan Zhi2,Li Liu1,Zhezhi Wang2,Cuiqin Li2,*()
Received:
2018-10-22
Accepted:
2019-02-19
Online:
2019-03-01
Published:
2019-09-01
Contact:
Cuiqin Li
Wenping Hua,Chen Chen,Yuan Zhi,Li Liu,Zhezhi Wang,Cuiqin Li. Effect of SmGGPPS2 Expression on Tanshinones Biosynthesis in Salvia miltiorrhiza[J]. Chinese Bulletin of Botany, 2019, 54(2): 217-226.
Primer name | Sequence (5′→3′) |
---|---|
OG2S (KpnI) | GGGGTACCGCGAAGAGCGTGGAAGC- AGA |
OG2R (BamHI) | CGGGATCC GGCAATAGCAATCAAGGGAGCA |
G2i1S (EcoRI) | CGGAATTC CTCCTCTCAACCTCTGTCAAAACTC |
G2i1R (KpnI) | GGGGTACCTCATCTGGACCACTGCC- TCC |
G2i2S (BamHI) | CGGGATCC CTCCTCTCAACCTCTGTCAAAACTC |
G2i2R (HindIII) | CCCAAGCTTTCATCTGGACCACTGCC- TCC |
35SF | GCCGTGAAGACTGGCGAACA |
35SR | AGGAAGGGTCTTGCGAAGGATAGT |
Table 1 Primers used for vector construction and detection in this study
Primer name | Sequence (5′→3′) |
---|---|
OG2S (KpnI) | GGGGTACCGCGAAGAGCGTGGAAGC- AGA |
OG2R (BamHI) | CGGGATCC GGCAATAGCAATCAAGGGAGCA |
G2i1S (EcoRI) | CGGAATTC CTCCTCTCAACCTCTGTCAAAACTC |
G2i1R (KpnI) | GGGGTACCTCATCTGGACCACTGCC- TCC |
G2i2S (BamHI) | CGGGATCC CTCCTCTCAACCTCTGTCAAAACTC |
G2i2R (HindIII) | CCCAAGCTTTCATCTGGACCACTGCC- TCC |
35SF | GCCGTGAAGACTGGCGAACA |
35SR | AGGAAGGGTCTTGCGAAGGATAGT |
Primer name | Sequence (5′→3′) | Primer name | Sequence (5′→3′) |
---|---|---|---|
ActinS | AGGAACCACCGATCCAGACA | SmDXS1S | TGAGAGCGACTACGACTGCTTTGG |
ActinR | GGTGCCCTGAGGTCCTGTT | SmDXS1R | CCCATCCAGATTGGCAGTAGGC |
SmHMGR1S | GCAACCATCTACTCTCGTCCCA | SmDXS2S | GGTCGAGGAACTGGAGGGATTG |
SmHMGR1R | GTGCTCCATGAGCTGCATCAG | SmDXS2R | CGTCAGGATTTCGTGCGGATA |
SmHMGR2S | GGGTTCAACTACGAGGCCATACTG | SmDXS3S | CACGAATGGGCTGCCAAAAT |
SmHMGR2R | TGTTTGTGCTCGCCACCAGG | SmDXS3R | CCATCGAATCCAATGAAGCCAC |
SmHMGR3S | AGTCTCGTGATGTCCCTGCTCG | SmGGPPS1S | GGGGCTATTTTGGGAGGTGGAA |
SmHMGR3R | GCCTCAACCTGCTTGGCGTA | SmGGPPS1R | CAGCAGCTTGGGATACGTGGTC |
SmIPI1S | AGCGTGCATCCAAATCCAGAC | SmGGPPS2S | CGGTCTCCTCTCAACCTCTGTCAA |
SmIPI1R | GATAGCTTCAAGCCCCCCTCA | SmGGPPS2R | CTCCTTCATCTGGACCACTGCCT |
SmCPS1S | ATGGATGGGCAGCAGCAGTAAA | SmGGPPS3S | GGCCAGTGCTCTGCTGTCTGTG |
SmCPS1R | CGTCCTCAACAACGTCCTGATGTATT | SmGGPPS3R | TCGGCCACCTCCATCGCTT |
Table 2 Primers used for qPCR in this study
Primer name | Sequence (5′→3′) | Primer name | Sequence (5′→3′) |
---|---|---|---|
ActinS | AGGAACCACCGATCCAGACA | SmDXS1S | TGAGAGCGACTACGACTGCTTTGG |
ActinR | GGTGCCCTGAGGTCCTGTT | SmDXS1R | CCCATCCAGATTGGCAGTAGGC |
SmHMGR1S | GCAACCATCTACTCTCGTCCCA | SmDXS2S | GGTCGAGGAACTGGAGGGATTG |
SmHMGR1R | GTGCTCCATGAGCTGCATCAG | SmDXS2R | CGTCAGGATTTCGTGCGGATA |
SmHMGR2S | GGGTTCAACTACGAGGCCATACTG | SmDXS3S | CACGAATGGGCTGCCAAAAT |
SmHMGR2R | TGTTTGTGCTCGCCACCAGG | SmDXS3R | CCATCGAATCCAATGAAGCCAC |
SmHMGR3S | AGTCTCGTGATGTCCCTGCTCG | SmGGPPS1S | GGGGCTATTTTGGGAGGTGGAA |
SmHMGR3R | GCCTCAACCTGCTTGGCGTA | SmGGPPS1R | CAGCAGCTTGGGATACGTGGTC |
SmIPI1S | AGCGTGCATCCAAATCCAGAC | SmGGPPS2S | CGGTCTCCTCTCAACCTCTGTCAA |
SmIPI1R | GATAGCTTCAAGCCCCCCTCA | SmGGPPS2R | CTCCTTCATCTGGACCACTGCCT |
SmCPS1S | ATGGATGGGCAGCAGCAGTAAA | SmGGPPS3S | GGCCAGTGCTCTGCTGTCTGTG |
SmCPS1R | CGTCCTCAACAACGTCCTGATGTATT | SmGGPPS3R | TCGGCCACCTCCATCGCTT |
Figure 1 Phenotypes and PCR-screening of the transgenic lines of Salvia miltiorrhiza (A) SmGGPPS2-overexpression transgenic line (OG2-3), SmGGPPS2-RNAi transgenic line (IG2-6), and wild type (Bar= 2 cm); (B) SmGGPPS2-overexpression transgenic lines (1-13); (B) SmGGPPS2-RNAi transgenic lines (1-20). M: DNA marker DL2000; WT: Wild type; c: Negative control; p: Positive control
Figure 2 Expression of SmGGPPS2 in overexpression (A) and RNAi (B) Salvia miltiorrhiza transgenic linesWT: Wild type. * Significant differences (P?0.05); ** Significant differences (P?0.01); *** Significant differences (P? 0.001). The data are normalized.
Figure 3 GC-MS chromatogram of Salvia miltiorrhiza transgenic linesA: Phthalic acid diisobutyl ester; B: 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione; C: Ferruginol; D: b-monopalmitin; E: Diisooctyl phthalate; F: 7β-hydroxytotarol; G: Tanshinone IIA; H: Cryptotanshinone; I: Campesterol; J: Stigmasterol; K: β- sitosterol
Figure 4 Contents of different ingredients from fat-soluble extract in transgenic lines (A) and contents oftanshinone IIA in different transgenic lines (B) of Salvia miltiorrhizaA–K see Figure 3. WT: Wild type. *** Significant differences (P<0.001)
Figure 5 Relative expression levels of genes involved in tanshinones biosynthesis of Salvia miltiorrhiza transgenic lines WT: Wild type. * Significant differences (P<0.05); ** Significant differences (P<0.01); *** Significant differences (P<0.001)
Figure 6 The resistance physiological indexes of different Salvia miltiorrhiza transgenic linesSOD: Superoxide dismutase; MDA: Malondialdehyde; POD: Peroxidase; WT: Wild type. * Significant differences (P<0.05); ** Significant differences (P<0.01)
[1] | 化文平, 刘文超, 王喆之, 李翠芹 ( 2016). 干涉丹参SmORA1对植物抗病和丹参酮类次生代谢的影响. 中国农业科学 49, 491-502. |
[2] | 化文平, 宋双红, 智媛, 王喆之 ( 2014). 丹参SmGGPPS3基因的克隆及表达分析. 植物科学学报 32, 50-57. |
[3] | 王海燕, 李玉琴, 王广旭 ( 2011). 白花丹参脂溶性成分超临界二氧化碳流体萃取与气相色谱-质谱分析. 医药导报 30, 978-981. |
[4] | 张蕾 ( 2009). 丹参牻牛儿基牻牛儿基焦磷酸合酶基因的克隆与功能研究. 博士论文. 北京: 中国人民解放军军事医学科学院. pp. 27-40. |
[5] |
Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ ( 2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866-2884.
DOI URL |
[6] | Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH ( 2006). Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mecha- nism of product chain length determination. J Biol Chem 281, 14991-15000. |
[7] | Chen C, Zhang Y, Qiakefu K, Zhang X, Han LM, Hua WP, Yan YP, Wang ZZ ( 2016). Overexpression of tomato Prosystemin (LePS) enhances pest resistance and the production of tanshinones in Salvia miltiorrhiza Bunge. J Agric Food Chem 64, 7760-7769. |
[8] | Chen W, He SZ, Liu DG, Patil GB, Zhai H, Wang FB, Stephenson TJ, Wang YN, Wang B, Valliyodan B, Nguyen HT, Liu QC ( 2015). A sweetpotato geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid content and enhances osmotic stress tolerance in Arabidopsis thaliana. PLoS One 10, e0137623. |
[9] | Cheng QQ, Su P, Hu YT, He YF, Gao W, Huang LQ ( 2014). RNA interference-mediated repression of SmCPS (Copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36, 363-369. |
[10] | Cui GH, Duan LX, Jin BL, Qian J, Xue ZY, Shen GA, Snyder JH, Song JY, Chen SL, Huang LQ, Peters RJ, Qi XQ ( 2015). Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza . Plant Physiol 169, 1607-1618. |
[11] | Han JL, Liu BY, Ye HC, Wang H, Li ZQ, Li GF ( 2006). Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48, 482-487. |
[12] | Hua WP, Song J, Li CQ, Wang ZZ ( 2012). Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Mol Biol Rep 39, 5775-5783. |
[13] | Hua WP, Zhang Y, Song J, Zhao LJ, Wang ZZ ( 2011). De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98, 272-279. |
[14] | Kai GY, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu YY, Zhang L ( 2010). Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza . Bio- technol Bioproc Eng 15, 236-245. |
[15] | Kai GY, Xu H, Zhou CC, Liao P, Xiao JB, Luo XQ, You LJ, Zhang L ( 2011). Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13, 319-327. |
[16] | Lin TH, Hsieh CL ( 2010). Pharmacological effects of Salvia miltiorrhiza( Danshen) on cerebral infarction. Chin Med 5, 22. |
[17] | Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX, Guo J, Huang LQ ( 2015). The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza . Molecules 20, 16235-16254. |
[18] | Ma YM, Yuan LC, Wu B, Li XE, Chen SL, Lu SF ( 2012). Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza . J Exp Bot 63, 2809-2823. |
[19] | Shi M, Luo XQ, Ju GH, Li LL, Huang SX, Zhang T, Wang HZ, Kai GY ( 2016). Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64, 2523-2530. |
[20] | Shi M, Luo XQ, Ju GH, Yu XH, Hao XL, Huang Q, Xiao JB, Cui LJ, Kai GY ( 2014). Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hy- droxy-3-methylglutaryl CoA reductase and 1-deoxy-Dxylulose 5-phosphate reductoisomerase. Funct Integr Genom 14, 603-615. |
[21] |
Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Shin JS, Ryu SB ( 2016). Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnol J 14, 29-39.
DOI URL |
[22] | Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F ( 2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034. |
[23] | Yan YP, Wang ZZ ( 2007). Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Org 88, 175-184. |
[24] |
Young AJ, Lowe GM ( 2001). Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385, 20-27.
DOI URL |
[1] | Laipeng Zhao, Baike Wang, Tao Yang, Ning Li, Haitao Yang, Juan Wang, Huizhuan Yan. Investigation of SlHVA22l gene regulating drought tolerance in tomato [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Hanqian Zhao, Jiayi Song, Jie Yang, Yongjing Zhao, Wennian Xia, Weizhuo Gu, Zhongyi Wang, Nan Yang, Huizhen Hu. Identification of XTH Family Genes in Antirrhinum majus and Screening of Genes Involoved in Sclerotinia sclerotiorum Resistance and Stamen Petalization [J]. Chinese Bulletin of Botany, 2024, 59(2): 188-203. |
[3] | Zhengyong Duan, Min Ding, Yuzhuo Wang, Yibing Ding, Ling Chen, Ruiyun Wang, Zhijun Qiao. Genome-wide Identification and Expression Analysis of SBP Genes in Panicum miliaceum [J]. Chinese Bulletin of Botany, 2024, 59(2): 231-244. |
[4] | Nan Wu, Lei Qin, Kan Cui, Haiou Li, Zhongsong Liu, Shitou Xia. Cloning of Brassica napus EXA1 Gene and Its Regulation on Plant Disease Resistance [J]. Chinese Bulletin of Botany, 2023, 58(3): 385-393. |
[5] | Feifei Wang, Zhenxiang Zhou, Yi Hong, Yangyang Gu, Chao Lü, Baojian Guo, Juan Zhu, Rugen Xu. Identification of the NF-YC Genes in Hordeum vulgare and Expression Analysis Under Salt Stress [J]. Chinese Bulletin of Botany, 2023, 58(1): 140-149. |
[6] | Kai Fan, Fangting Ye, Zhijun Mao, Xinfeng Pan, Zhaowei Li, Wenxiong Lin. Comparative Genomics of the Small Heat Shock Protein Family in Angiosperms [J]. Chinese Bulletin of Botany, 2021, 56(3): 245-261. |
[7] | Lulu Xie, Qingqing Cui, Chunjuan Dong, Qingmao Shang. Recent Advances in Molecular Mechanisms of Plant Graft Healing Process [J]. Chinese Bulletin of Botany, 2020, 55(5): 634-643. |
[8] | Yegeng Fan,Lihang Qiu,Xing Huang,Huiwen Zhou,Chongkun Gan,Yangrui Li,Rongzhong Yang,Jianming Wu,Rongfa Chen. Expression Analysis of Key Genes in Gibberellin Biosynthesis and Related Phytohormonal Dynamics During Sugarcane Internode Elongation [J]. Chinese Bulletin of Botany, 2019, 54(4): 486-496. |
[9] | Xiaolong Wang,Fengzhi Liu,Xiangbin Shi,Xiaodi Wang,Xiaohao Ji,Zhiqiang Wang,Baoliang Wang,Xiaocui Zheng,Haibo Wang. Evolution and Expression of NCED Family Genes in Vitis vinifera [J]. Chinese Bulletin of Botany, 2019, 54(4): 474-485. |
[10] | Liu Ming, Liu Xia, Sun Ran, Li Yuling, Du Kejiu. Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa [J]. Chinese Bulletin of Botany, 2018, 53(6): 764-772. |
[11] | Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun. Advances in the Functions of Immunophilins in Plants [J]. Chinese Bulletin of Botany, 2017, 52(6): 808-819. |
[12] | Ying Bao*, Jiaxiao Du, Xiang Jing, Si Xu. Sequence Divergence and Expression Specificity of the Starch Synthase Gene Family in Oryza officinalis Leaf [J]. Chinese Bulletin of Botany, 2015, 50(6): 683-690. |
[13] | Tao Wang, Menglong Chen, Ling Liu, Chuanli Ning, Binhua Cai, Zhen Zhang, Yushan Qiao. Changes in Genome and Gene Expression During Plant Polyploidization [J]. Chinese Bulletin of Botany, 2015, 50(4): 504-515. |
[14] | Yuanbao Cai, Xiangyan Yang, Guangming Sun, Qiang Huang, Yeqiang Liu, Shaopeng Li, Zhili Zhang. Cloning of Flowering-related Gene AcMADS1 and Characterization of Expression in Tissues of Pineapple (Ananas comosus) [J]. Chinese Bulletin of Botany, 2014, 49(6): 692-703. |
[15] | XING Bing-Yu,ZHU Nan,ZHANG Hong-Pei,YANG Xi-Ling,DONG Juan-E. Effects of methyl viologen on the antioxidant system in cultured Salvia miltiorrhiza cells [J]. Chin J Plant Ecol, 2014, 38(5): 507-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||