Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (3): 299-307.DOI: 10.11983/CBB22058
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Binqi Li1,2, Jiahui Yan1,2, Hao Li2, Wei Xin1,2, Yunhe Tian1,2, Zhenbiao Yang2, Wenxin Tang2,*()
Received:
2022-03-27
Accepted:
2022-05-10
Online:
2022-05-01
Published:
2022-05-18
Contact:
Wenxin Tang
Binqi Li, Jiahui Yan, Hao Li, Wei Xin, Yunhe Tian, Zhenbiao Yang, Wenxin Tang. Changes of Small GTPases Activity During Cucumber Tendril Winding[J]. Chinese Bulletin of Botany, 2022, 57(3): 299-307.
Figure 1 Mechanical contact response of cucumber tendril (A) Natural winding: the white arrows show the winding process of the tendril after touching the stick; 20:00, 20:30, 21:00, and 22:00 indicate the time points of the observation day (bars=3 cm); (B) Winding after manual touching: after 30 seconds’ (30 touches) touch with a wooden stick, tendrils were photographed and recorded every 30 seconds, and tendrils were curled at about 180° at 3 minutes; white arrow indicates the stick touch point (bars=2 cm).
Figure 2 Evolutionary analysis and sequence alignment of ROP family members in cucumber (A) The phylogenetic tree of ROPs in cucumber and Arabidopsis thaliana; (B) Comparison of amino acid sequences of ROP6 between cucumber and Arabidopsis thaliana by DNAMAN.
Primer name | Forward primer (5′→3′) | Reverse primer (5′→3′) |
---|---|---|
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Cucsa.393880 | TTTCCCACGGACTACGTGCCTAC | AACTGCTTGTCATCCCGAAGATC |
Cucsa.234270 | AGGCTTGTGGGATACTGCTGGTC | CTTCTTTCGCTTCTTCCGCTTTG |
Cucsa.309440 | TTCAGTGCTAATGTGGTGGTGGA | GATGGCTAGTCAGAAATTGCTTGTCGT |
Cucsa.046650 | TCAATCTTGGCTTATGGGACACT | GGAGCTGCATTCTATGTATGTAATT |
Cucsa.197080 | TTCGTTAGTTAGCCGAGCGAGTT | TGATTTCACATTCTGCTGGGTTT |
Cucsa.256740 | TGGTTAATGGGCAGTCTGTGAAT | TGGTCCCTACAAGAATAATGGGT |
Cucsa.332390 | TGTGGCTTTCTCGTTAATCAGCA | GTTCCTCCTCTTCCTTGGCATCT |
Cucsa.116450 | TACTGTTGGAGATGGAGCGGTTGG | TTAGCATATCGACGGTCCTCACG |
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Table 1 Primer sequences for RT-PCR in cucumber
Primer name | Forward primer (5′→3′) | Reverse primer (5′→3′) |
---|---|---|
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Cucsa.393880 | TTTCCCACGGACTACGTGCCTAC | AACTGCTTGTCATCCCGAAGATC |
Cucsa.234270 | AGGCTTGTGGGATACTGCTGGTC | CTTCTTTCGCTTCTTCCGCTTTG |
Cucsa.309440 | TTCAGTGCTAATGTGGTGGTGGA | GATGGCTAGTCAGAAATTGCTTGTCGT |
Cucsa.046650 | TCAATCTTGGCTTATGGGACACT | GGAGCTGCATTCTATGTATGTAATT |
Cucsa.197080 | TTCGTTAGTTAGCCGAGCGAGTT | TGATTTCACATTCTGCTGGGTTT |
Cucsa.256740 | TGGTTAATGGGCAGTCTGTGAAT | TGGTCCCTACAAGAATAATGGGT |
Cucsa.332390 | TGTGGCTTTCTCGTTAATCAGCA | GTTCCTCCTCTTCCTTGGCATCT |
Cucsa.116450 | TACTGTTGGAGATGGAGCGGTTGG | TTAGCATATCGACGGTCCTCACG |
Cucsa.322750 | CAAATGTAGTTGTGAATGGGAGC | TTCCAACCAGAACAATAGGCACT |
Figure 3 Tissue expression pattern of ROPs gene in cucumber (A) Detect the expression abundance of ROPs in cucumber tendrils, stems, leaves, fruits and flowers by RT-PCR; (B) Detect the expression of ROPs in cucumber tendrils by qRT-PCR (n=4).
Figure 4 Changes of ROP activity during cucumber tendril winding 0C, 1C and 2C represent 0, 1 and 2 cycle of winding, respectively. n=5; significance analysis was performed by Student’s t test. **P<0.01
Figure 5 Auxin treatment significantly enhanced mechanical stimulation sensitivity of cucumber tendrils (A) Determination of auxin content before and after tendril winding by liquid mass spectrometry (0C, 0.5C, 1C, 2C represent 0, 0.5, 1 and 2 cycles of winding, respectively); (B), (C) The effects of auxin on mechanical sensitivity of cucumber tendril (bars=3 cm); n=10; significance analysis was performed using One-way ANOVA; *P<0.05; **P<0.01; NS: No significant difference
[1] | 马宏棋, 陈敏氡, 朱海生, 温庆放 (2000). 草莓ABA的快速提取方法及超高效液相色谱分析. 园艺学报 41, 577-584. |
[2] | 谭汝芳, 李玲 (2006). 小G蛋白ROP的研究进展. 生命科学研究 10(S1), 80-84. |
[3] | 王昕, 种康 (2005). 植物小G蛋白功能的研究进展. 植物学通报 22, 1-10. |
[4] | 杨文定, 娄成后 (1994). 丝瓜卷须中电化学波传递与快速卷曲反应. 中国科学(B辑) 24, 837-844. |
[5] | 张之为, 赵君, 樊明寿, 赵燕 (2009). 植物小G蛋白的研究进展. 西北植物学报 29, 622-628. |
[6] |
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K (1999). GTP-binding proteins in plants. Cell Mol Life Sci 55, 233-256.
PMID |
[7] |
Bowling AJ, Vaughn KC (2008). Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.). Protoplasma 232, 153-163.
DOI PMID |
[8] |
Bowling AJ, Vaughn KC (2009). Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96, 719-727.
DOI PMID |
[9] |
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernan-dez-Sanchez ME, Farge E (2018). Mechanotransduction in tumor progression: the dark side of the force. The dark side of the force. J Cell Biol 217, 1571-1587.
DOI PMID |
[10] |
Burnham RJ, Revilla-Minaya C (2011). Phylogenetic in-fluence on twining chirality in lianas from Amazonian Peru. Ann Mo Bot Gard 98, 196-205.
DOI URL |
[11] |
Chapman EJ, Estelle M (2009). Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43, 265- 285.
DOI URL |
[12] |
Dharmasiri N, Dharmasiri S, Estelle M (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
DOI URL |
[13] |
Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001). Ion channel-forming alamethi-cin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate sig-naling in lima bean. Plant Physiol 125, 369-377.
PMID |
[14] | Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J (2020). Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechano responsive EPHA2/LYN complex. Dev Cell 54, 302-316. |
[15] |
Hamant O, Traas J (2010). The mechanics behind plant development. New Phytol 185, 369-385.
DOI URL |
[16] |
Haswell ES, Meyerowitz EM (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16, 1-11.
DOI URL |
[17] |
Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18, 730-734.
DOI URL |
[18] |
Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
DOI URL |
[19] |
Kleine-Vehn J, Łangowski Ł, Wiśniewska J, Dhonukshe P, Brewer PB, Friml J (2008). Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1, 1056-1066.
DOI PMID |
[20] | Monshausen GB, Gilroy S (2009). Feeling green: mechanosensing in plants. Trends Cell Biol 19, 228-235. |
[21] |
Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M (2018). Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells. Plant Physiol 176, 378-391.
DOI URL |
[22] |
Radin I, Richardson RA, CoomeyJH, Weiner ER, Bascom CS, Li T, Bezanilla M, Haswell ES (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586-590.
DOI PMID |
[23] |
Reinhold L (1967). Induction of coiling in tendrils by auxin and carbon dioxide. Science 158, 791-793.
PMID |
[24] |
Seidelmann K, Melzer B, Speck T (2012). The complex leaves of the monkey’s comb (Amphilophium crucigerum, Bignoniaceae): a climbing strategy without glue. Am J Bot 99, 1737-1744.
DOI PMID |
[25] |
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell RA (2019). Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69-74.
DOI URL |
[26] |
Sousa-Baena MS, Sinha NR, Hernandes-Lopes J, Lohmann LG (2018). Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Front Plant Sci 9, 403.
DOI PMID |
[27] |
Takai Y, Sasaki T, Matozaki T (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
DOI PMID |
[28] |
Tang WX, Lin WW, Zhou X, Guo JZ, Dang X, Li BQ, Lin DS, Yang ZB (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol 32, 508-517.
DOI URL |
[29] |
Tao LZ, Cheung AY, Nibau C, Wu HM (2002). RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17, 2369-2383.
DOI URL |
[30] |
Wu HM, Hazak O, Cheung AY, Yalovsky S (2011). RAC/ ROP GTPases and auxin signaling. Plant Cell 23, 1208- 1218.
DOI URL |
[31] | Xu TD (2012). Rho GTPase activity analysis in plant cells. Methods Mol Biol 876, 135-144. |
[32] |
Xu TD, Dai N, Chen JS, Nagawa S, Cao M, Li HJ, Zhou ZM, Chen X, De Rycke R, Rakusová H, Wang WY, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang ZB (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025- 1028.
DOI URL |
[33] |
Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang ZB (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
DOI URL |
[1] | Yuying Zhou, Hui Chen, Simu Liu. Advances in Auxin Response of Non-canonical Aux/IAA Proteins in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Xiangpei Kong, Mengyue Zhang, Zhaojun Ding. There Is a Way Out-new Breakthroughs in Extracellular Auxin Sensing [J]. Chinese Bulletin of Botany, 2023, 58(6): 861-865. |
[3] | Yuan Yuan, Enhebayaer, Qi Yanhua. Research Advances in Biological Functions of GH3 Gene Family in Plants [J]. Chinese Bulletin of Botany, 2023, 58(5): 770-782. |
[4] | Shuyao Zhou, Jianming Li, Juan Mao. AtGH3.17-mediated Regulation of Auxin and Brassinosteroid Response in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2023, 58(3): 373-384. |
[5] | Ye Qing, Yan Xiaoyan, Chen Huize, Feng Jinlin, Han Rong. Effect of Nitrogen-doped Graphene Quantum Dots on Growth Direction of Primary Root in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2022, 57(5): 623-634. |
[6] | Lixia Jia, Yanhua Qi. Advances in the Regulation of Rice (Oryza sativa) Grain Shape by Auxin Metabolism, Transport and Signal Transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263-275. |
[7] | Yanyan Li, Yanhua Qi. Advances in Biological Functions of Aux/IAA Gene Family in Plants [J]. Chinese Bulletin of Botany, 2022, 57(1): 30-41. |
[8] | Jingwen Wang, Xingjun Wang, Changle Ma, Pengcheng Li. A Review on the Mechanism of Ribosome Stress Response in Plants [J]. Chinese Bulletin of Botany, 2022, 57(1): 80-89. |
[9] | Yuqing Lin, Yanhua Qi. Advances in Auxin Efflux Carrier PIN Proteins [J]. Chinese Bulletin of Botany, 2021, 56(2): 151-165. |
[10] | Rongfeng Huang, Tongda Xu. Auxin Regulates the Lateral Root Development Through MAPK-mediated VLCFAs Biosynthesis [J]. Chinese Bulletin of Botany, 2021, 56(1): 6-9. |
[11] | Yuting Yao,Jiaqi Ma,Xiaoli Feng,Jianwei Pan,Chao Wang. A Role of Arabidopsis Phosphoinositide Kinase, FAB1, in Root Hair Growth [J]. Chinese Bulletin of Botany, 2020, 55(2): 126-136. |
[12] | Shuhui Zhang,Hong Wang,Wenru Wang,Xuelian Wu,Yuansong Xiao,Futian Peng. Effects of Sucrose on Seedling Growth and Development and SnRK1 Activity in Prunus persica [J]. Chinese Bulletin of Botany, 2019, 54(6): 744-752. |
[13] | Zhenmei He,Dongming Li,Yanhua Qi. Advances in Biofunctions of the ABCB Subfamily in Plants [J]. Chinese Bulletin of Botany, 2019, 54(6): 688-698. |
[14] | Kongqin Hu, Zhaojun Ding. A TIR1-independent Auxin Signaling Module [J]. Chinese Bulletin of Botany, 2019, 54(3): 293-295. |
[15] | Guangchao Liu , Zhaojun Ding. Auxin Regulates Plant Growth and Development by Mediating Various Environmental Cues [J]. Chinese Bulletin of Botany, 2018, 53(1): 17-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||