Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (1): 46-57.DOI: 10.11983/CBB18045
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Shengnan Cui1,2,Yihan Zhang1,Fan Xu1,*()
Received:
2018-02-12
Accepted:
2018-05-21
Online:
2019-01-01
Published:
2019-07-31
Contact:
Fan Xu
Shengnan Cui,Yihan Zhang,Fan Xu. Heterologous Overexpression of Rice OsSAPP3 Gene Promotes Leaf Senescence in Transgenic Arabidopsis[J]. Chinese Bulletin of Botany, 2019, 54(1): 46-57.
Primer name | Primer sequence (5'-3') | Annotation |
---|---|---|
CDSOsSAPP3-F | CCCGGGATGCTATCTGCTGCGATGGAATACTT | PCR |
CDSOsSAPP3-R | GAACTCTATGTAGGAACTGAGAATGGAGCAAGG | PCR |
cGVG-SAPP3-F | GTCGACATGCTATCTGCTGCGATGGAATAC | PCR |
cGVG-SAPP3-R | ATCGATCTATGTAGGAACTGAGAATGGAGCAA | PCR |
ProOsSAPP3-F | AAGCTTTCATATCCGTTGTTCCGTAGCG | PCR |
ProOsSAPP3-R | TCTAGACCTTCATCTCCGACACCTCCC | PCR |
Table 1 Sequences of primers
Primer name | Primer sequence (5'-3') | Annotation |
---|---|---|
CDSOsSAPP3-F | CCCGGGATGCTATCTGCTGCGATGGAATACTT | PCR |
CDSOsSAPP3-R | GAACTCTATGTAGGAACTGAGAATGGAGCAAGG | PCR |
cGVG-SAPP3-F | GTCGACATGCTATCTGCTGCGATGGAATAC | PCR |
cGVG-SAPP3-R | ATCGATCTATGTAGGAACTGAGAATGGAGCAA | PCR |
ProOsSAPP3-F | AAGCTTTCATATCCGTTGTTCCGTAGCG | PCR |
ProOsSAPP3-R | TCTAGACCTTCATCTCCGACACCTCCC | PCR |
Figure 1 GUS histochemical staining of ProOsSAPP3-GUS transgenic Arabidopsis thaliana at different developmental stages (A) From top to bottom, from left to right, the transgenic Arabidopsis thaliana before stain: Stage 0.5, Stage 1.02, Stage 1.04, Stage 1.10, Stage 6.0, Stage 6.9; (B) From top to bottom, from left to right, the transgenic Arabidopsis thaliana was stained in turn, and the seedling age was identical to that before staining; (C) Transgenic Arabidopsis thaliana treated with MOCK solution (hormone solvent); (D) Transgenic Arabidopsis thaliana treated with 10 μmol?L-1 ABA solution; (E) Transgenic Arabidopsis thaliana treated with 10 μmol?L-1 6-BA solution. Bars=5 mm
Figure 2 Heterologous expression of OsSAPP3 gene lead to abnormal growth and development of transgenic Arabidopsis (A) 35S-OsSAPP3 transgenic Arabidopsis and wild-type Arabidopsis gene expression levels; (B) Wild-type Arabidopsis plant (WT) and 35S-OsSAPP3 transgenic Arabidopsis line (35S-OsSAPP3). The top left panel was the 14-day-old seedling growing in the nutrient soil, the bottom left is the 21-day-old plant growing in the nutrient soil, and the right panel was the plants cultured in nutrient soil for 25 days. Values are means±SD of one representative biological replicate (n=10) out of three, ** P<0.01. Bars=1 cm
Figure 3 Exogenously induced OsSAPP3 heterologous over expression resulted in the inability of germination of transgenic Arabidopsis (A)-(C) DEX induced 36 h, the germination of transgenic and control seeds; (D)-(F) DEX induced 48 h, the germination of transgenic and control seeds; (G)-(I) DEX induced 72 h, the germination of transgenic and control seeds; (J) The expression of OsSAPP3 induced by exogenous factors at different times; (K) Exogenous induction of WRKY6 expression changes at different times; (L) Gene expression levels of GVG-OsSAPP3 transgenic Arabidopsis homozygous lines. Values are means±SD of one representative biological replicate (n=10) out of three. * P<0.05, ** P<0.01. Bars=1 cm
Number of rosette leavesa | 5% significant level | 1% very significant level | Rosette leaf sizeb | 5% significant level | 1% very significant level | |
---|---|---|---|---|---|---|
CK | 9.4 | c | A | 2.84 | d | C |
Line2 | 10.2 | bc | A | 2.3 | ab | BC |
Line20 | 11.8 | abc | A | 1.9 | bc | AB |
Line14 | 12.6 | ab | A | 1.5 | cd | A |
Number of rosette leavesa | 5% significant level | 1% very significant level | Rosette leaf sizeb | 5% significant level | 1% very significant level | |
---|---|---|---|---|---|---|
CK | 9.4 | c | A | 2.84 | d | C |
Line2 | 10.2 | bc | A | 2.3 | ab | BC |
Line20 | 11.8 | abc | A | 1.9 | bc | AB |
Line14 | 12.6 | ab | A | 1.5 | cd | A |
Figure 4 Exogenous-induced OsSAPP3 heterologous over expression promotes premature aging of transgenic Arabidopsis mature seedlings (A) Arabidopsis control (CK) and GVG-OsSAPP3 transgenic Arabidopsis after spray treatment for 5 days; (B) 24-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis plants; (C) The CK and GVG-OsSAPP3 transgenic Arabidopsis bolting process; (D) 34-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis plants; (E) The CK and GVG-OsSAPP3 transgenic Arabidopsis flowering process; (F) CK and GVG-OsSAPP3 transgenic Arabidopsis after spray treatment for 21 days; (G) The chlorophyll contents of the fourth, fifth and sixth leaf of 26-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis. Values are means±SD of one representative biological replicate (n=10) out of three. Bars=1 cm
Figure 5 Changes of senescence marker gene expression in the fifth and sixth leaves of control (CK) and GVG-OsSAPP3 transgenic Arabidopsis after 30 μmol?L-1 DEX and MOCK solution treatment for 24 hoursValues are means±SD of one representative biological replicate (n=10) out of three. * P<0.05, ** P<0.01.
1 | 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 134-137. |
2 |
牟少亮, 李秀娟, 官德义, 赖燕, 何水林 ( 2011). 水稻蛋白磷酸酶ABI2基因启动子的克隆和功能分析. 热带作物学报 32, 2293-2297.
DOI URL |
3 | 孙高阳, 吴向远, 叶琳琳, 孟淑君, 阎鹏帅, 汤继华, 郭战勇 ( 2017). 玉米衰老相关基因在2个杂交种及其亲本中的表达分析. 河南农业大学学报 2, 140-148. |
4 |
翁华, 冉亮, 魏群 ( 2003). 植物蛋白磷酸酶及其在植物抗逆中的作用. 植物学报 20, 609-615.
DOI URL |
5 | 肖冬, 崔燕娇, 王宁宁 ( 2014). 叶片衰老过程中的蛋白激酶和蛋白磷酸酶. 植物生理学报 50, 1267-1273. |
6 | 徐凡 ( 2012). GmSARK和AtSARK基因调控叶片衰老分子机制的研究. 博士论文. 天津: 南开大学. pp. 1-12. |
7 |
徐凡, 李鹏丽, 安宝燕, 苑玲玲, 孟涛, 岳慧琴, 王宁宁 ( 2010). 大豆诱导型启动子驱动类受体蛋白激酶GmSARK转基因植物分析. 植物学报 45, 149-156.
DOI URL |
8 |
徐娜, 徐江民, 蒋玲欢, 饶玉春 ( 2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112.
DOI URL |
9 |
杨同文, 李成伟 ( 2014). 植物叶片衰老的表观遗传调控. 植物学报 49, 729-737.
DOI URL |
10 |
郑建敏, 张涛, 郑家奎 ( 2009). 水稻叶片衰老相关基因的研究进展. 基因组学与应用生物学 28, 1010-1019.
DOI URL |
11 |
Aoyama T, Chua NH ( 1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11, 605-612.
DOI URL PMID |
12 |
Bhatnagar N, Min MK, Choi EH, Kim N, Moon SJ, Yoon I, Kwon T, Junq KH, Kim BG ( 2017). The protein phosphatase 2C clade a protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10.Plant Mol Biol 93, 389-401.
DOI URL PMID |
13 |
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J ( 2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510.
DOI URL PMID |
14 |
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ ( 2005). Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/ starvation-induced senescence in Arabidopsis. Plant J 42, 567-585.
DOI URL PMID |
15 |
Castro PH, Lilay GH, Muñoz-Mérida A, Schjoerring JK, Azevedo H, Assunção AGL ( 2017). Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci Rep 7, 3806.
DOI URL PMID |
16 |
Chen C, Yu Y, Ding XD, Liu BD, Duanmu H, Zhu D, Sun XL, Cao L, Zaib-Un-Nisa, Li Q, Zhu YM ( 2018). Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma 255, 643-654.
DOI URL PMID |
17 |
Jiang YJ, Liang G, Yang SZ, Yu DQ ( 2014). Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid- induced leaf senescence. Plant Cell 26, 230-245.
DOI URL PMID |
18 |
Lim PO, Hong GN ( 2007). Aging and senescence of the leaf organ. J Plant Biol 50, 291-300.
DOI URL |
19 |
Lim PO, Woo HR, Hong GN ( 2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8, 272-278.
DOI URL PMID |
20 |
Liu D, Gong QQ, Ma YY, Li PL, Li JP, Yang SH, Yuan LL, Yu YQ, Pan DD, Xu F, Wang NN ( 2010). cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61, 1655-1669.
DOI URL PMID |
21 |
Liu L, Xu W, Hu XS, Liu HJ, Lin YJ ( 2016). W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 6, 20881.
DOI URL PMID |
22 | Menges M, Hennig L, Gruissem W, Murray JAH ( 2002). Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277, 41987-42002. |
23 |
Quirino BF, Noh YS, Himelblau E, Amasino RM ( 2000). Molecular aspects of leaf senescence. Trends Plant Sci 5, 278-282.
DOI URL PMID |
24 |
Robatzek S, Somssich IE ( 2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense.Genes Dev 16, 1139-1149.
DOI URL PMID |
25 | Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andrès CB, Kessler F, Hörtensteiner S, Paek NC ( 2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex ii for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24, 507-518. |
26 |
Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I ( 2007). The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19, 2213-2224.
DOI URL PMID |
27 |
Shen XJ, Guo X, Zhao D, Zhang Q, Jiang YZ, Wang YT, Peng X, Wei Y, Zhai ZF, Zhao W, Li TH ( 2017). Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.Plant Physiol Biochem 119, 275-285.
DOI URL PMID |
28 |
Wang CL, Lu GQ, Hao YQ, Guo HM, Guo Y, Zhao J, Cheng HM ( 2017). ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246, 453-469.
DOI URL PMID |
29 |
Wang FB, Liu JC, Chen MX, Zhou LJ, Li ZW, Zhao Q, Pan G, Zaidi SHR, Cheng FM ( 2016). Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One 11, e0161203.
DOI URL PMID |
30 |
Xiao D, Cui YJ, Xu F, Xu XX, Gao GX, Wang YX, Guo ZX, Wang D, Wang NN ( 2015). Senescence-suppressed protein phosphatase directly interacts with the cytoplasmic domain of senescence-associated receptor-like kinase and negatively regulates leaf senescence in Arabidopsis. Plant Physiol 169, 1275-1291.
DOI URL PMID |
31 |
Xu F, Meng T, Li PL, Yu YQ, Cui YJ, Wang YX, Gong QQ, Wang NN ( 2011). A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157, 2131-2153.
DOI URL PMID |
32 |
Xue TT, Wang D, Zhang SZ, Ehlting J, Ni F, Jakab S, Zheng CC, Zhong Y ( 2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Ara- bidopsis. BMC Genomics 9, 550.
DOI URL PMID |
33 | Zhang KW, Gan SS ( 2012). An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158, 961-969. |
34 |
Zhao Y, Chan ZL, Gao JH, Xing L, Cao MJ, Yu CM, Hu YL, You J, Shi HT, Zhu YF, Gong YH, Mu ZX, Wang HQ, Deng X, Wang PC, Bressan RA, Zhu JK ( 2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA 113, 1949-1954.
DOI URL PMID |
[1] | Jixuan Yang, Xuefei Wang, Hongya Gu. Genetic Basis of Flowering Time Variations in Tibetan Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(3): 373-382. |
[2] | Yanxiao Chen, Yaping Li, Jinjun Zhou, Lixia Xie, Yongbin Peng, Wei Sun, Yanan He, onghui Jiang, Zenglan Wang, Chongke Zheng, Xianzhi Xie. Effect of Amino Acid Point Mutations on the Structure and Function of Phytochrome B in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(3): 481-494. |
[3] | Gang Wang, Ertao Wang. The Broad-spectrum Innate Resistance Against Clubroot Disease Conferred by WeiTsing is Mechanistically Revealed [J]. Chinese Bulletin of Botany, 2023, 58(3): 356-358. |
[4] | Yongguang Li, Hui Ren, Yingjie Zhang, Ruining Li, Hao Ai, Xianzhong Huang. Analysis of the molecular evolution of the PEBP gene family in cruciferous plants [J]. Biodiv Sci, 2022, 30(6): 21545-. |
[5] | Yang Yongqing, Guo Yan. Analysis of the pH Sensing Mechanism of Plant Apoplasts [J]. Chinese Bulletin of Botany, 2022, 57(4): 409-411. |
[6] | Tiantian Zhi, Zhou Zhou, Chengyun Han, Chunmei Ren. PAD4 Mutation Accelerating Programmed Cell Death in Arabidopsis thaliana Tyrosine Degradation Deficient Mutant sscd1 [J]. Chinese Bulletin of Botany, 2022, 57(3): 288-298. |
[7] | Yanyan Li, Yanhua Qi. Advances in Biological Functions of Aux/IAA Gene Family in Plants [J]. Chinese Bulletin of Botany, 2022, 57(1): 30-41. |
[8] | Qiuxin Li, Wei Chi, Daili Ji. Research Progress of CURT1 on Regulating Thylakoid Membrane Curvature [J]. Chinese Bulletin of Botany, 2021, 56(4): 462-469. |
[9] | Yongmei Che, Yanjun Sun, Songchong Lu, Lixia Hou, Xinxin Fan, Xin Liu. AtMYB77 Involves in Lateral Root Development via Regulating Nitric Oxide Biosynthesis under Drought Stress in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2021, 56(4): 404-413. |
[10] | Ting Wang, Huanhuan Yang, Hongwei Zhao, Josef Voglmeir, Li Liu. Changes of Protein N-glycosylation in the Growth of Arabidopsis thaliana and Effects of Enzymatic Deglycosylation on Root Development [J]. Chinese Bulletin of Botany, 2021, 56(3): 262-274. |
[11] | Yuqing Lin, Yanhua Qi. Advances in Auxin Efflux Carrier PIN Proteins [J]. Chinese Bulletin of Botany, 2021, 56(2): 151-165. |
[12] | Long Ma, Guilin Li, Shipeng Li, Su Jiang. An Improved Protocol for Whole Mount Clearing of Plant Root Tip [J]. Chinese Bulletin of Botany, 2020, 55(5): 596-604. |
[13] | Fei Du, Yuling Jiao. WUSCHEL-mediated Innate Immunity in Plant Stem Cells Provides a Novel Antiviral Strategy [J]. Chinese Bulletin of Botany, 2020, 55(5): 537-540. |
[14] | Fangfang He,Huize Chen,Jinlin Feng,Lin Gao,Jiao Niu,Rong Han. Response of Arabidopsis Cohesin RAD21 to Cell Division after Enhanced UV-B Radiation [J]. Chinese Bulletin of Botany, 2020, 55(4): 407-420. |
[15] | Nan Zhang,Ziguang Liu,Shichen Sun,Shengyi Liu,Jianhui Lin,Yifang Peng,Xiaoxu Zhang,He Yang,Xi Cen,Juan Wu. Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis [J]. Chinese Bulletin of Botany, 2020, 55(4): 421-429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||