[1]张健, 徐金相, 孔英珍, 纪振动, 王兴春, 安丰英, 李超, 孙加强, 张素芝, 杨晓辉, 牟金叶, 刘新仿, 李家洋, 薛勇彪, 左建儒 .化学诱导激活型拟南芥突变体库的构建及分析. [J].植物学通报, 2005, 32 :1082-1088 [2]Ames BN .Assay of inorganic phosphate, total phosphate and phosphatase. [J].Methods Enzymol, 1966, 8 :115-118 [3]Bates TR, Lynch JP .Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. [J].Plant Cell Environ, 1996, 19 (): 529-538 [4]Cordell D, Dranger JO, White S .The story of phosphorus: Global food security and food for thought. [J].Global Environ Change, 2009, 19 ():292-305. [5]Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L .t role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots[J]., 2006, :- [6]Herrera-Estrella L (2006).Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103, 6765-6770. [7].Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, [8]Weigel D, Garcia JA, Paz-Ares J (2007).Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39: 1033-1037. [9]Gomes-Junior RA, Moldes CA, Delite F S, Pompeu GB, Grat?o PL, Mazzafera P, Lea PJ, Azevedo RA (2006).Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65, 1330-1337. [10]Gou JY, Felippes F, Liu CJ, Weigel D, Wang JW (2011).Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23, 1512-1522. [11]Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005).Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168, 293-303. [12]Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) .Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151, 2120-2132. [13]Jefferson RA, Kavanagh TA, Bevan MW (1987).GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6, 3901-3907. [14]Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011).Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11, 121-128. [15]Kim J, Yi H, Choi G, Shin B, Song PS, Choi G (2003).Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399-2407. [16]Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH (2012).The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159, 461-478. [17]Lapis-Gaza HR, Jost R, Finnegan PM (2014).Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol 14, 334. [18]Li M, Shinano T, Tadano T (1997).Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43, 237-245. [19]Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008).Regulatory [20]network of microRNA399 and PHO2 by systemic signaling.Plant Physiol 147, 732–746. [21]López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003).The role nutrient availability in regulating root architecture. Curr Opin Plant Biol 6, 280-287. [22]Neumann G, Massonneau A, Mertinoia E, Ro¨mheld V (1999).Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208, 373-382. [23]Raghothama KG (1999) Phosphate acquisition.Annu Rev Plant Physiol. Plant Mol Biol 50, 665-693. [24]Rausch C, Bucher M (2002).Molecular mechanisms of phosphate transport in plants. Planta 216, 23-37. [25]Rouached H, Arpat AB, Poirier Y (2010).Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3, 288-299. [26]Santi S, Schmidt W (2009).Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183, 1072-1084. [27].Shin H, Shin HS, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate [28]distribution between the roots and the shoots during phosphate starvation.Plant J 45, 712-726. [29]Sternberg D, Mandels GR (1979).Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139, 761-769. [30]Stone J, Liang X, Nekl E, Stiers J (2005).Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41, 744-754. [31]Ticconi CA, Abel S (2004).Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9, 548-555. [32]Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003).SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15, 1009-1019. [33]Vance CP, Uhde‐Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.New Phytol 157, 423-447 [34]Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008).Dual effects of miR156-targeted SPL genes and CYP78A5/ KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20, 1231-243. [35]Watt M, Evans JR (1999).Proteoid roots. Physiology and development. Plant Physiol 121, 317-323. [36]Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009).The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759. [37]Xing SP, Salinas M, H?hmann S, Berndtgen R, Huijser P (2010).MiR156-targeted and non targeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22, 3935-3950. [38]Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009).SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21, 347-361. [39]Yu S, Galv?o VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012).Gibberellin Regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTERBINDING–LIKE transcription factors. Plant Cell 24, 3320-3332. [40]Zhang Y, Schwarz S, Saedler H, Huijser P (2007).SPL8, a local regulator in a subset of gibberellins mediated developmental processes in Arabidopsis. Plant Mol Biol 63, 429-439. [41]Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z, Li X, Zhang Y (2010).Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA 107, 18220-18225. |