Chinese Bulletin of Botany ›› 2015, Vol. 50 ›› Issue (5): 644-.DOI: 10.11983/CBB14172
Previous Articles Next Articles
Minmin Xie, Jiangtao Chao, Yingzhen Kong*
Received:
2014-09-22
Accepted:
2015-04-02
Online:
2015-09-01
Published:
2015-10-09
Contact:
Kong Yingzhen
About author:
? These authors contributed equally to this paper
Minmin Xie, Jiangtao Chao, Yingzhen Kong. Glycosyltransferase Genes Involved in Xyloglucan Biosynthesis[J]. Chinese Bulletin of Botany, 2015, 50(5): 644-.
Figure 1 Structures of the representative XyGs subunits and glycosyltransferases that involved in xyloglucan biosynthesis(A) The structure of the XLFG subunit, XXT1, XXT2 and XXT5 are xyloglucan xylosyltransferases that adding xylose residues; (B) The structure of the YXXG subunit, XUT1 is a xyloglucan-specific galacturonosyltransferase1; (C) The structure of the XXJG subunit; (D) The structure of the XSGG subunit. Fucp: Fucose; Xylp: Xylose; Galp: Galactose; Glcp: Glucose; GalpA: Galacturonic acid; OAC: Acetylation
1 | Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010). TRICHOME BIREFRINGENCE and its homolog AT5G0- 1360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis.Plant Physiol 153, 590-602. |
2 | Bootten TJ, Harris PJ, Melton LD, Newman RH (2004). Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall.J Exp Bot 55, 571-583. |
3 | Caffall KH, Mohnen D (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides.Carbohydr Res 344, 1879-1900. |
4 | Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.Plant Cell 20, 1519-1537. |
5 | Chou YH, Pogorelko G, Zabotina OA (2012). Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes.Plant Physiol 159, 1355-1366. |
6 | Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007). A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase.Proc Natl Acad Sci USA 104, 8550-8555. |
7 | Cosgrove DJ (2005). Growth of the plant cell wall.Nat Rev Mol Cell Biol 6, 850-861. |
8 | Cosgrove DJ, Jarvis MC (2012). Comparative structure and biomechanics of plant primary and secondary cell walls.Front Plant Sci 3, 204. |
9 | Davis J, Brandizzi F, Liepman AH, Keegstra K (2010). Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane.Plant J 64, 1028-1037. |
10 | Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989-1000. |
11 | Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005). Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.Planta 221, 729-738. |
12 | Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011). O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain.Plant Cell 23, 4041-4053. |
13 | Hantus S, Pauly M, Darvill AG, Albersheim P, York WS (1997). Structural characterization of novel L-galactose- containing oligosaccharide subunits of jojoba seed xyloglucans.Carbohydr Res 304, 11-20. |
14 | Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR 2nd, Darvill A, York WS (2005). Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae.Carbohydr Res 340, 1826-1840. |
15 | Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012). RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis.Mol Plant 5, 984-992. |
16 | Jia ZH, Cash M, Darvill AG, York WS (2005). NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.Carbohydr Res 340, 1818-1825. |
17 | Kong YZ, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li XM, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA (2015). Galactose- depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.Plant Physiol 167, 1296-1306. |
18 | Kong YZ, Zhou GK, Abdeen AA, Schafhauser J, Rich- ardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013). GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage.Plant Physiol 163, 1203-1217. |
19 | Kong YZ, Zhou GK, Avci U, Gu XG, Jones C, Yin YB, Xu Y, Hahn MG (2009). Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional ortho- logs to PARVUS/AtGATL1 in Arabidopsis.Mol Plant 2, 1040-1050. |
20 | Kong YZ, Zhou GK, Yin YB, Xu Y, Pattathil S, Hahn MG (2011). Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases.Plant Phy- siol 155, 1791-1805. |
21 | Li WB, Guan QM, Wang ZY, Wang YD, Zhu JH (2013). A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis.Mol Plant 6, 1344-1354. |
22 | Li XM, Cordero I, Caplan J, Mølhøj M, Reiter WD (2004). Molecular analysis of 10 coding regions from Arabidopsis that are homologous to the MUR3 xyloglucan galactosyltransferase.Plant Physiol 134, 940-950. |
23 | Liepman AH, Cavalier DM (2012). The CELLULOSE SYN- THASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives.Front Plant Sci 3, 109. |
24 | Madson M (2003). The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins.Plant Cell Online 15, 1662-1670. |
25 | Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011). Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea.Plant Physiol 155, 1068-1078. |
26 | Park YB, Cosgrove DJ (2012a). Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/ xxt2 mutant of Arabidopsis.Plant Physiol 158, 465-475. |
27 | Park YB, Cosgrove DJ (2012b). A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.Plant Phy- siol 158, 1933-1943. |
28 | Pauly M, Gille S, Liu LF, Mansoori N, de Souza A, Schultink A, Xiong GY (2013). Hemicellulose biosynthesis.Planta 238, 627-642. |
29 | Pauly M, Keegstra K (2010). Plant cell wall polymers as precursors for biofuels.Curr Opin Plant Biol 13, 305-312. |
30 | Peña MJ, Darvill AG, Eberhard S, York WS, O'Neill MA (2008). Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.Glycobiology 18, 891-904. |
31 | Peña MJ, Kong YZ, York WS, O'Neill MA (2012). A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth.Plant Cell 24, 4511-4524. |
32 | Peña MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004). The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth.Plant Physiol 134, 443-451. |
33 | Perrin RM, Jia ZH, Wagner TA, O'Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003). Analysis of xyloglucan fucosylation in Arabidopsis.Plant Physiol 132, 768-778. |
34 | Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi MS, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013). Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of poly- saccharide acetylation and increased resistance to pathogens.Plant Physiol 162, 9-23. |
35 | Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M (2013). The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents.Plant Physiol 163, 86-94. |
36 | Shirakawa M, Yamatoya K, Nishinari K (1998). Tailoring of xyloglucan properties using an enzyme.Food Hydrocoll 12, 25-28. |
37 | Søgaard C, Stenbæk A, Bernard S, Hadi M, Driouich A, Scheller HV, Sakuragi Y (2012). GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues.PLoS One 7, e31324. |
38 | Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002). Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments.Proc Natl Acad Sci USA 99, 9055-9060. |
39 | Tamura K, Shimada T, Kondo M, Nishimura M, Hara- Nishimura I (2005). KATAMARI1/MURUS3 is a novel golgi membrane protein that is required for endomembrane organization in Arabidopsis.Plant Cell 17, 1764-1776. |
40 | Tedman-Jones JD, Lei R, Jay F, Fabro G, Li XM, Reiter WD, Brearley C, Jones JDG (2008). Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves.Plant J 56, 691-703. |
41 | Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002). The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1.Proc Natl Acad Sci USA 99, 3340-3345. |
42 | von Schantz L, Gullfot F, Scheer S, Filonova L, Cicortas Gunnarsson L, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M (2009). Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules.BMC Biotechnol 9, 92. |
43 | Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ (2012). Ara- bidopsis GT34 family contains five xyloglucan α-1,6-xylos- yltransferases.New Phytol 195, 585-595. |
44 | Wang C, Li S, Ng S, Zhang BC, Zhou YH, Whelan J, Wu P, Shou HX (2014). Mutation in xyloglucan 6-xylosytrans- ferase results in abnormal root hair development in Oryza sativa.J Exp Bot 65, 4149-4157. |
45 | Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006). Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose.Am J Bot 93, 1402-1414. |
46 | Wolf S, Hématy K, Höfte H (2012). Growth control and cell wall signaling in plants.Annu Rev Plant Biol 63, 381-407. |
47 | York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996). The structures of arabinoxyloglucans produced by solanaceous plants.Carbohydr Res 285, 99-128. |
48 | Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012). Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis.Plant Physiol 159, 1367-1384. |
49 | Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008). Arabidopsis XXT5 gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis.Plant J 56, 101-115. |
50 | Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014). TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis.Plant Phy- siol 166, 181-189. |
[1] | Jing Xia, Yuchun Rao, Danyun Cao, Yi Wang, Linxin Liu, Yating Xu, Wangshu Mou, Dawei Xue. Research Progress on the Regulatory Mechanisms of OsACS and OsACO in Rice Ethylene Biosynthesis [J]. Chinese Bulletin of Botany, 2024, 59(2): 291-301. |
[2] | Xiaoxiao Liu, Di Gong, Tianpeng Gao, Lina Yin, Shiwen Wang. The Major Membrane Lipids in Plant Thylakoids and Their Biosynthesis [J]. Chinese Bulletin of Botany, 2024, 59(1): 144-155. |
[3] | Yuge Zhang, Xiaoyan Yuan, Guifang Zhang, Yujian Li, Jinhuan Yin, Jinxing Lin, Xiaojuan Li. The Application of Click Chemistry Reactions in Plant Cell Labeling [J]. Chinese Bulletin of Botany, 2023, 58(6): 956-965. |
[4] | Haitao Hu, Longbiao Guo. Progress in the Research on Riboflavin Biosynthesis and Function in Plants [J]. Chinese Bulletin of Botany, 2023, 58(4): 638-655. |
[5] | Yanjun Guo, Feng Chen, Jingwen Luo, Wei Zeng, Wenliang Xu. The Biosynthesis of Plant Cell Wall Xylan and Its Application [J]. Chinese Bulletin of Botany, 2023, 58(2): 316-334. |
[6] | FENG Xu-Fei, LEI Zhang-Ying, ZHANG Yu-Jie, XIANG Dao, YANG Ming-Feng, ZHANG Wang-Feng, ZHANG Ya-Li. Effect of leaf nitrogen allocation on photosynthetic nitrogen use efficiency at flowering and boll stage of Gossypium spp. [J]. Chin J Plant Ecol, 2023, 47(11): 1600-1610. |
[7] | Yu Miao, Ruan Chengjiang, Ding Jian, Li Jingbin, Lu Shunguang, Wen Xiufeng. Hrh-miRn458 Regulates Oil Biosynthesis of Sea Buckthorn via Targeting Transcription Factor WRI1 [J]. Chinese Bulletin of Botany, 2022, 57(5): 635-648. |
[8] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[9] | Deshuai Liu, Lei Yao, Weirong Xu, Mei Feng, Wenkong Yao. Research Progress of Melatonin in Plant Stress Resistance [J]. Chinese Bulletin of Botany, 2022, 57(1): 111-126. |
[10] | Peipei Liu, Geng Zhang, Xiaojuan Li. Biosynthesis and Function of Plant Pectin [J]. Chinese Bulletin of Botany, 2021, 56(2): 191-200. |
[11] | Yanmei Dong, Wenying Zhang, Zhengyi Ling, Jingrui Li, Hongtong Bai, Hui Li, Lei Shi. Advances in Transcription Factors Regulating Plant Terpenoids Biosynthesis [J]. Chinese Bulletin of Botany, 2020, 55(3): 340-350. |
[12] | Yu Zhang, Mingjie Zhao, Wei Zhang. Transcriptional Regulatory Network of Secondary Cell Wall Biosynthesis in Plants [J]. Chinese Bulletin of Botany, 2020, 55(3): 351-368. |
[13] | Wei Chen,Xiaoxian Zeng,Chuping Xie,Chang’en Tian,Yuping Zhou. The Dynamic Regulation Mechanism of the Endo-genous ABA in Plant [J]. Chinese Bulletin of Botany, 2019, 54(6): 677-687. |
[14] | Ruijun Duan, Aidong Wang, Guoxiong Chen. Advances in Study of Plant Cuticle Genes [J]. Chinese Bulletin of Botany, 2017, 52(5): 637-651. |
[15] | Xueyuan Han, Linchun Mao. Research Progress on Constituents, Histochemical Characteristics and Biosynthesis of Suberin [J]. Chinese Bulletin of Botany, 2017, 52(3): 358-374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||