Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (6): 956-965.DOI: 10.11983/CBB22252
• SPECIAL TOPICS • Previous Articles Next Articles
Yuge Zhang1,2, Xiaoyan Yuan1,2, Guifang Zhang1,2, Yujian Li1,2, Jinhuan Yin1,2, Jinxing Lin1,2, Xiaojuan Li1,2,*()
Received:
2022-10-25
Accepted:
2023-02-28
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: lixj@bjfu.edu.cn
Yuge Zhang, Xiaoyan Yuan, Guifang Zhang, Yujian Li, Jinhuan Yin, Jinxing Lin, Xiaojuan Li. The Application of Click Chemistry Reactions in Plant Cell Labeling[J]. Chinese Bulletin of Botany, 2023, 58(6): 956-965.
Figure 1 Two types of cycloadditions reactions CuAAC (A) and SPAAC (B) CuAAC uses end-group alkynes and azides to form 1,4-disubstituted-1,2,3-triazole catalyzed by copper ions; SPAAC uses cyclooctyne and azide reactions to form stable triazoles. CuAAC: Copper (I) catalysed azide-alkyne cycloaddition; SPAAC: Strain-promoted azide-alkyne cycloaddition
Figure 2 The flow diagram of applying click chemistry to labeling cell wall glycan The non-natural sugars in the figure refer to the monosaccharide components in the cell wall, and do not refer to specific sugar molecules. ① Exogenous monosaccharide analogues are metabolized into cells through the remedial glycan synthesis pathway; ② Probes containing fluorophores click with glycans that contain monosaccharide analogues and are deposited on the cell wall; ③ Fluorescence is detected to investigate the arrangement of monosaccharide analogues in plants, as shown in the fluorescent image of pectin RG-II in plant cell wall; ④ Fluorescence microscopy imaging of pectin distribution in plant roots labelled by click chemistry (bar=50 μm).
外源糖 | 毒害作用 | 组织定位 |
---|---|---|
炔基化岩藻糖 | 无毒性 | 分布于根表皮的细胞壁中 |
8-叠氮-8-脱氧-3-脱氧- D-甘露-2-辛酮糖酸 | 无毒性 | 分布于整个初生壁中, 但在质膜附近标记更强 |
叠氮基N-乙酰氨基葡萄糖 | 无毒性 | 根中均有分布, 分生区分布较多 |
叠氮乙酰基阿拉伯糖 | 无毒性 | 根中均有分布 |
叠氮乙酰基岩藻糖 | 无毒性 | 根中均有分布 |
6-脱氧-炔基葡萄糖 | 抑制根生长 | 定位于根毛凸起和突出的根毛尖端 |
Table 1 Sugar analogues containing alkyne or azide functional groups in Arabidopsis thaliana
外源糖 | 毒害作用 | 组织定位 |
---|---|---|
炔基化岩藻糖 | 无毒性 | 分布于根表皮的细胞壁中 |
8-叠氮-8-脱氧-3-脱氧- D-甘露-2-辛酮糖酸 | 无毒性 | 分布于整个初生壁中, 但在质膜附近标记更强 |
叠氮基N-乙酰氨基葡萄糖 | 无毒性 | 根中均有分布, 分生区分布较多 |
叠氮乙酰基阿拉伯糖 | 无毒性 | 根中均有分布 |
叠氮乙酰基岩藻糖 | 无毒性 | 根中均有分布 |
6-脱氧-炔基葡萄糖 | 抑制根生长 | 定位于根毛凸起和突出的根毛尖端 |
[1] | 成波, 陈兴 (2020). 唾液酸化聚糖的化学标记和解析. 科学通报 65, 2984-2997. |
[2] | 刘佩佩, 张耿, 李晓娟 (2021). 植物果胶的生物合成与功能. 植物学报 56, 191-200. |
[3] |
刘玥, 尹悦佳, 梁重阳, 黄殿帅, 王阳, 刘艳芝, 窦瑶, 冯树丹, 郝东云 (2015). 3D-SIM结构照明超分辨率显微镜实现蛋白质在植物亚细胞器内的定位. 植物学报 50, 495-503.
DOI |
[4] | 肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香 (2020). 木葡聚糖及其在植物抗逆过程中的功能研究进展. 植物学报 55, 777-787. |
[5] |
杨麦云, 陈鹏 (2015). 生物正交标记反应研究进展. 化学学报 73, 783-792.
DOI |
[6] | 占方玲, 高思宇, 谢元栋, 张金铭, 李毅, 刘宁 (2020). 点击化学反应在蛋白质组学分析中的研究进展. 分析化学 48, 431-438. |
[7] | Finn MG, Kolb HC, Fokin VV, Sharpless KB (张欣豪, 吴云东译)(2008). 点击化学——释义与目标. 化学进展 20, 1-4. |
[8] |
Agard NJ, Prescher JA, Bertozzi CR (2004). A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126, 15046-15047.
DOI URL |
[9] |
Ancajas CF, Ricks TJ, Best MD (2020). Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chem Phys Lipids 232, 104971.
DOI URL |
[10] |
Anderson CT, Wallace IS, Somerville CR (2012). metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc Natl Acad Sci USA 109, 1329-1334.
DOI PMID |
[11] |
Beatty KE, Xie F, Wang Q, Tirrell DA (2005). Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 127, 14150-14151.
PMID |
[12] |
Beller NC, Hummon AB (2022). Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteo-mic analysis. Mol Omics 18, 579-590.
DOI URL |
[13] |
Bidhendi AJ, Chebli Y, Geitmann A (2020). Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 278, 164-181.
DOI URL |
[14] |
Bird RE, Lemmel SA, Yu X, Zhou QA (2021). Bioorthogonal chemistry and its applications. Bioconjug Chem 32, 2457-2479.
DOI URL |
[15] |
Breugst M, Reissig HU (2020). The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew Chem Int Ed Engl 59, 12293-12307.
DOI URL |
[16] |
Chang XL, Chen LY, Liu BN, Yang ST, Wang HF, Cao AN, Chen CY (2022). Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. Chin Chem Lett 33, 3303-3314.
DOI URL |
[17] |
Cheng B, Tang Q, Zhang C, Chen X (2021). Glycan labeling and analysis in cells and in vivo. Annu Rev Anal Chem (Palo Alto Calif) 14, 363-387.
DOI URL |
[18] |
Depmeier H, Hoffmann E, Bornewasser L, Kath-Schorr S (2021). Strategies for covalent labeling of long RNAs. Chembiochem 22, 2826-2847.
DOI PMID |
[19] |
Devaraj NK, Finn MG (2021). Introduction: click chemistry. Chem Rev 121, 6697-6698.
DOI PMID |
[20] |
Devree BT, Steiner LM, Głazowska S, Ruhnow F, Her-burger K, Persson S, Mravec J (2021). Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnol Biofuels 14, 78.
DOI |
[21] |
Dumont M, Lehner A, Vauzeilles B, Malassis J, Marchant A, Smyth K, Linclau B, Baron A, Mas Pons J, Ander-son CT, Schapman D, Galas L, Mollet JC, Lerouge P (2016). Plant cell wall imaging by metabolic click-mediated labeling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid. Plant J 85, 437-447.
DOI URL |
[22] |
Fantoni NZ, El-Sagheer AH, Brown T (2021). A hitchhiker’s guide to click-chemistry with nucleic acids. Chem Rev 121, 7122-7154.
DOI PMID |
[23] |
Gothelf KV, Jørgensen KA (1998). Asymmetric 1,3-dipolar cycloaddition reactions. Chem Rev 98, 863-910.
PMID |
[24] |
Hoogenboom J, Berghuis N, Cramer D, Geurts R, Zuilhof H, Wennekes T (2016). Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides. BMC Plant Biol 16, 220.
PMID |
[25] |
Huisgen R (1963). 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2, 565-598.
DOI URL |
[26] |
Jao CY, Roth M, Welti R, Salic A (2009). Metabolic labeling and direct imaging of choline phospholipids in vivo. Proc Natl Acad Sci USA 106, 15332-15337.
DOI URL |
[27] |
Jao CY, Salic A (2008). Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci USA 105, 15779-15784.
DOI URL |
[28] |
John CJ, Carolyn RB (2010). Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39, 1272-1279.
PMID |
[29] |
Kim E, Koo H (2019). Biomedical applications of copper- free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci, 10, 7835-7851.
DOI URL |
[30] |
Kolb HC, Finn MG, Sharpless KB (2001). Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40, 2004-2021.
DOI URL |
[31] |
Kuerschner L, Thiele C (2022). Tracing lipid metabolism by alkyne lipids and mass spectrometry: the state of the art. Front Mol Biosci 9, 880559.
DOI URL |
[32] |
Li L, Zhang ZY (2016). Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules 21, 1393.
DOI URL |
[33] |
Lion C, Simon C, Huss B, Blervacq AS, Tirot L, Toybou D, Spriet C, Slomianny C, Guerardel Y, Hawkins S, Biot C (2017). BLISS: a bioorthogonal dual-labeling strategy to unravel lignification dynamics in plants. Cell Chem Biol 24, 326-338.
DOI PMID |
[34] |
Ming X, Leonard P, Heindl D, Seela F (2008). Azide-alkyne "click" reaction performed on oligonucleotides with the universal nucleoside 7-octadiynyl-7-deaza-2'-deoxyinosine. Nucleic Acids Symp Ser 52, 471-472.
DOI URL |
[35] |
Neef AB, Luedtke NW (2014). An azide-modified nucleoside for metabolic labeling of DNA. Chembiochem 15, 789-793.
DOI URL |
[36] |
Neef AB, Pernot L, Schreier VN, Scapozza L, Luedtke NW (2015). A bioorthogonal chemical reporter of viral infection. Angew Chem Int Ed Engl 54, 7911-7914.
DOI URL |
[37] |
Paper JM, Mukherjee T, Schrick K (2018). Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14, 31.
DOI |
[38] |
Parker CG, Pratt MR (2020). Click chemistry in proteomic investigations. Cell 180, 605-632.
DOI PMID |
[39] |
Prescher JA, Bertozzi CR (2005). Chemistry in living sys-tems. Nat Chem Biol 1, 13-21.
DOI |
[40] |
Rodríguez DF, Moglie Y, Ramírez-Sarmiento CA, Singh SK, Dua K, Zacconi FC (2022). Bio-click chemistry: a bridge between biocatalysis and click chemistry. RSC Adv 12, 1932-1949.
DOI PMID |
[41] |
Ropitaux M, Hays Q, Baron A, Fourmois L, Boulogne I, Vauzeilles B, Lerouge P, Mollet JC, Lehner A (2022). Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labeling of pectins in living elongating cells. Plant J 110, 916-924.
DOI URL |
[42] |
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002). A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl 41, 2596-2599.
DOI URL |
[43] |
Takayama Y, Kusamori K, Nishikawa M (2019). Click chemistry as a tool for cell engineering and drug delivery. Molecules 24, 172.
DOI URL |
[44] |
Teramoto H, Kojima K (2015). Incorporation of methionine analogues into Bombyx mori silk fibroin for click modifica-tions. Macromol Biosci 15, 719-727.
DOI URL |
[45] |
Tobimatsu Y (2017). A “double click” for illuminating plant cell walls. Cell Chem Biol 24, 246-247.
DOI PMID |
[46] |
Truong L, Ferré-D'Amaré AR (2019). From fluorescent proteins to fluorogenic RNAs: tools for imaging cellular macromolecules. Protein Sci 28, 1374-1386.
DOI PMID |
[47] |
Turner MA, Lwin TM, Amirfakhri S, Nishino H, Hoffman RM, Yazaki PJ, Bouvet M (2021). The use of fluorescent anti-CEA antibodies to label, resect and treat cancers: a review. Biomolecules 11, 1819.
DOI URL |
[48] |
Wang JG, Zhang JB, Lee YM, Ng S, Shi Y, Hua ZC, Lin QS, Shen HM (2017). Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nat Protoc 12, 279-288.
DOI PMID |
[49] |
Wittig G, Krebs A (1961). Zur existenz niedergliedriger cycloalkine, 1. Chem Ber 94, 3260-3275.
DOI URL |
[50] | Wu J, Yu YH (2015). Recent progress on application of “click” chemistry in labeling of biomolecules. J Jianghan Univ (Nat Sci Ed) 43, 138-145. |
[51] |
Xiong HT, Zou HY, Liu H, Wang M, Duan LL (2021). Sur-face functionalization of a γ-graphyne-like carbon material via click chemistry. Chem Asian J 16, 922-925.
DOI URL |
[52] |
Yao TT, Xu XW, Huang R (2021). Recent advances about the applications of click reaction in chemical proteomics. Molecules 26, 5368.
DOI URL |
[53] |
Yoon HY, Lee D, Lim DK, Koo H, Kim K (2022). Cop-per-free click chemistry: applications in drug delivery, cell tracking, and tissue engineering. Adv Mater 34, 2107192.
DOI URL |
[54] |
Zhu YT, Chen X (2017). Expanding the scope of metabolic glycan labeling in Arabidopsis thaliana. Chembiochem 18, 1286-1296.
DOI URL |
[55] |
Zhu YT, Wu J, Chen X (2016). Metabolic labeling and imaging of N-linked glycans in Arabidopsis thaliana. Angew Chem Int Ed Engl 55, 9301-9305.
DOI URL |
[56] |
Zou J, Dong XY, Li YL, Tong SQ, Wang JW, Liao MX, Huang GF (2019). Deep sequencing identification of differentially expressed miRNAs in the spinal cord of resinifera-toxin-treated rats in response to electroacupuncture. Neurotox Res 36, 387-395.
DOI |
[1] | Yanjun Guo, Feng Chen, Jingwen Luo, Wei Zeng, Wenliang Xu. The Biosynthesis of Plant Cell Wall Xylan and Its Application [J]. Chinese Bulletin of Botany, 2023, 58(2): 316-334. |
[2] | FENG Xu-Fei, LEI Zhang-Ying, ZHANG Yu-Jie, XIANG Dao, YANG Ming-Feng, ZHANG Wang-Feng, ZHANG Ya-Li. Effect of leaf nitrogen allocation on photosynthetic nitrogen use efficiency at flowering and boll stage of Gossypium spp. [J]. Chin J Plant Ecol, 2023, 47(11): 1600-1610. |
[3] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[4] | Ting Wang, Huanhuan Yang, Hongwei Zhao, Josef Voglmeir, Li Liu. Changes of Protein N-glycosylation in the Growth of Arabidopsis thaliana and Effects of Enzymatic Deglycosylation on Root Development [J]. Chinese Bulletin of Botany, 2021, 56(3): 262-274. |
[5] | Yu Zhang, Mingjie Zhao, Wei Zhang. Transcriptional Regulatory Network of Secondary Cell Wall Biosynthesis in Plants [J]. Chinese Bulletin of Botany, 2020, 55(3): 351-368. |
[6] | Minmin Xie, Jiangtao Chao, Yingzhen Kong. Glycosyltransferase Genes Involved in Xyloglucan Biosynthesis [J]. Chinese Bulletin of Botany, 2015, 50(5): 644-. |
[7] | Xiao Han, Kai Guo, Xinxin Li, Xu Liu, Bingrui Wang, Tao Xia, Liangcai Peng, Shengqiu Feng. Expression Profiling and Functional Prediction of Arabidopsis AtCESA Genes [J]. Chinese Bulletin of Botany, 2014, 49(5): 539-547. |
[8] | Xiaowan Yang, Guoqi Zheng, Juan Yang, Xing Xu, Di Lu, Le Yang. Changes in Endogenous Hormone Contents and Cell Wall Component, Degrading Enzyme Activity and Their Relation in Lycium barbarum [J]. Chinese Bulletin of Botany, 2014, 49(1): 30-40. |
[9] | Lin Liu, Xianqing Quan, Xiaomei Zhao, Lihua Huang, Shangcai Feng, Kunyan Huang, Xiaoyan Zhou, Wenting Su. Arabidopsis Callose Synthase Gene GSL8 is Required for Cell Wall Formation and Establishment and Maintenance of Quiescent Center [J]. Chinese Bulletin of Botany, 2013, 48(4): 389-397. |
[10] | Zhifang Lin, Nan Liu. Research Progress in the Control and Regulation of Plant Growth and Development by Reactive Oxygen Species [J]. Chinese Bulletin of Botany, 2012, 47(1): 74-86. |
[11] | WANG Wen-Long CHEN Su ZHU Guo-Li CHEN Jia WANG Xue-Chen. Application of Extensometer in Analyzing Characteristics of Expansin from Vicia faba [J]. Chinese Bulletin of Botany, 2004, 21(03): 312-318. |
[12] | CHEN Ai-Guo CHEN Jin-Hong. Advances in the Study of Expansin [J]. Chinese Bulletin of Botany, 2003, 20(06): 752-758. |
[13] | HAO Huai-Qing WANG Qin-Li CHEN Yan-Mei HU Yu-Xi LIN Jin-Xing. The Construction of Cell Wall and Cytoplasmic Movements in Pollen Tubes [J]. Chinese Bulletin of Botany, 2003, 20(03): 270-279. |
[14] | HOU Lei-PingLI Mei-Lan. Progress of Studies on the Plant Growth Promoting Mechanism of Brassinolide (BR) [J]. Chinese Bulletin of Botany, 2001, 18(05): 560-566. |
[15] | SONG Ping ZHOU Xie. The Mechanism of Internodal Elongation of Deepwater Rice [J]. Chinese Bulletin of Botany, 2000, 17(01): 46-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||