植物学报 ›› 2014, Vol. 49 ›› Issue (3): 254-261.DOI: 10.3724/SP.J.1259.2014.00254 cstr: 32102.14.SP.J.1259.2014.00254
赵翔, 王琳丹, 李园园, 赵青平, 张骁*
收稿日期:
2013-03-29
修回日期:
2013-09-02
出版日期:
2014-05-01
发布日期:
2014-06-03
通讯作者:
张骁
基金资助:
P2SA介导PHOT2调节拟南芥下胚轴向光弯曲机制分析;NOA1调控水杨酸诱导的拟南芥根波动生长机制分析
Xiang Zhao, Lindan Wang, Yuanyuan Li, Qingping Zhao, Xiao Zhang*
Received:
2013-03-29
Revised:
2013-09-02
Online:
2014-05-01
Published:
2014-06-03
Contact:
Xiao Zhang
摘要: 向光素(PHOT1和PHOT2)功能冗余调节单侧强蓝光诱导的拟南芥(Arabidopsis thaliana)黄化苗下胚轴向光弯曲表现功能冗余, 限制了人们对PHOT2信号转导机制的深入研究。通过化学诱变剂甲基磺酸乙酯(EMS)诱变拟南芥phot1突变体, 避开PHOT1基因的干扰, 寻找PHOT2下游信号分子。研究结果表明, 已成功筛选到1株遗传稳定的下胚轴向蓝光不弯曲突变体。遗传分析结果显示, 该突变体可能是PHOT2下游信号分子突变, 将其命名为p2sa1(phototropin2 signaling associated1)。用100 μmol·m–2·s–1强蓝光单侧照射, phot1p2sa1下胚轴向光弯曲缺失, 呈现phot1phot2双突变的表型, 然而phot1p2sa1在强蓝光下叶绿体避光正常, 明显不同于phot1phot2。实验证实P2SA1可能位于PHOT2的下游, 参与调节PHOT2介导的拟南芥下胚轴向光弯曲反应。
赵翔, 王琳丹, 李园园, 赵青平, 张骁. PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报, 2014, 49(3): 254-261.
Xiang Zhao, Lindan Wang, Yuanyuan Li, Qingping Zhao, Xiao Zhang. Isolation and Characterization of Regulators Involved in PHOT2-mediated Phototropism of Hypocotyls in Arabidopsis. Chinese Bulletin of Botany, 2014, 49(3): 254-261.
刘浩, 王棚涛, 安国勇, 周云, 樊丽娜 (2010). 拟南芥干旱相关突变体的远红外筛选及基因克隆. 植物学报 45, 220–225Babourina O, Newman IA, Shabala S (2002). Blue light induced kinetics of H+ and Ca2+ fuxes in etiolated wild type and phototropin- mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99, 2433–2438.Babourina O, Godfreg L, Voltchanskii K (2004). Changes in ion fluxes during phototropic bending of etilated oat coleoptiles. Ann Botany 94, 187–194.Baum G, Long JC, Jenkins GI, et al (1999). Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96, 13554–13559.Blakeslee JJ, Bandyopadhyay A, Peer WA, et al (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134, 28–31.Carbonnel Md, Davis P, Roelfsema MRG, et al (2010). The Arabidopsis PSK2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant physiol 152, 1391–1405.Demarsy E, Fankhauser C (2009). Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12, 69–74.Folta KM, Lieg EJ, Durham T, et al (2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133, 1464–1470.Folta KM, Kaufman LS (2003). Phototropin 1 is required for high-fluence blue light-mediated mRNA destabilization. Plant Mol Biol 51, 609–618.Friml J, Yang X, Michniewicz M, et al (2004). PINOID dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865.Haga K, Iino M (2006). Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot 57, 837–847.Harada A, Shimazaki K (2007). Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 83, 102–111.Huala E, Oeller PW, Liscum E, et al (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2120–2123.Inada S, Ohgishi M, Mayama T, et al (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887–896.Inoue S, Kinoshita T, Matsumoto M, et al (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105, 5626–5631.Inoue S, Takemiya A, Shimazaki K (2010). Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol 13, 587–593.Kagawa T, Sakai T, Suetsugu N, et al (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.Kasahara M, Kagawa T, Oikawa K, et al (2002). Chloroplast avoidance movement reduces photodamage in plant. Nature 420, 829–832.Kinoshita T, Doi M, Suetsugu N, et al (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660.Lariguet P, Schepens I, Hodgson D, et al (2006). PKS1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA 103, 10134–10139.Michio D, Ayako S, Takashi E, et al (2004). A transgene encoding a blue-light receptor,phot1,restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot 56, 517–523.Motchoulski A, Liscum E (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964.Ohgishi M, Saji K, Okada, Sakai T (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101, 2223–2228.Sakai T, Kagawa T, Kasahara M, et al (2001). Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98, 6969–6974.Sakai T, Wada T, Ishiguro S, et al (2000). RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225–236.Stone BB, Stowe-Evans EL, Harper RM, et al (2008). Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1, 129–144.Sullivan S, Thomson CE, Lamont DJ, et al (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin1. Mol Plant 1, 178–194.Takemiya A, Inoue S, Doi M, et al (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17, 1120–1127.Tseng TS and Briggs WR (2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell 22, 1-12. |
[1] | 上官瑶瑶, 苏世平, 顾雪丹, 张正中, 赵祜, 李毅, 魏星宇. 红砂幼苗对光周期和光质配比的响应[J]. 植物生态学报, 2025, 49(5): 788-800. |
[2] | 刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制研究[J]. 植物学报, 2025, 60(4): 1-0. |
[3] | 景艳军, 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[4] | 罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性[J]. 植物学报, 2024, 59(5): 752-762. |
[5] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[6] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[7] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[8] | 杨永青, 郭岩. 植物细胞质外体pH感受机制的解析[J]. 植物学报, 2022, 57(4): 409-411. |
[9] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[10] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[11] | 李秋信, 迟伟, 季代丽. CURT1调控类囊体膜弯曲的研究进展[J]. 植物学报, 2021, 56(4): 462-469. |
[12] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[13] | 王婷, 羊欢欢, 赵弘巍, JosefVoglmeir, 刘丽. 蛋白质N-糖基化在拟南芥生长周期中的变化规律及去糖基化对根发育的影响[J]. 植物学报, 2021, 56(3): 262-274. |
[14] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[15] | 马龙, 李桂林, 李师鹏, 蒋苏. 根尖整体透明技术改良[J]. 植物学报, 2020, 55(5): 596-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||