植物学报 ›› 2019, Vol. 54 ›› Issue (2): 255-264.DOI: 10.11983/CBB18152
所属专题: 逆境生物学专辑 (2019年54卷2期)
代宇佳1,2,罗晓峰1,2,周文冠1,2,陈锋1,2,帅海威1,杨文钰1,*(),舒凯1,2,*()
收稿日期:
2018-07-08
接受日期:
2018-12-10
出版日期:
2019-03-01
发布日期:
2019-09-01
通讯作者:
杨文钰,舒凯
基金资助:
Yujia Dai1,2,Xiaofeng Luo1,2,Wenguan Zhou1,2,Feng Chen1,2,Haiwei Shuai1,Wenyu Yang1,*(),Kai Shu1,2,*()
Received:
2018-07-08
Accepted:
2018-12-10
Online:
2019-03-01
Published:
2019-09-01
Contact:
Wenyu Yang,Kai Shu
摘要: 复杂多变的自然环境使植物进化出许多适应策略, 其中由局部胁迫引起的系统响应广泛存在, 精细调节植物的生长发育和环境适应能力。植物系统响应的诱导因素首先引起植物从局部到全株范围的信号转导, 这类信号称为系统信号。当受到外界刺激时, 植物首先在受刺激细胞内触发化学信号分子的变化, 如茉莉酸和水杨酸甲酯等在浓度和信号强度方面发生变化; 进而, 伴随着一系列复杂的信号转换, 多种信号组分共同完成系统响应的激活。植物激素、小分子肽和RNA等被认为是缓慢系统信号通路中的关键组分, 而目前也有大量研究阐释了由活性氧、钙信号和电信号相互偶联组成的快速系统信号通路。植物系统信号对其生存和繁衍至关重要, 其精确的转导机制仍值得深入研究。该文综述了植物响应环境的系统信号转导研究进展, 对关键的系统信号组分及其转导机制进行了总结, 同时对植物系统信号传递的研究方向进行了展望。
代宇佳,罗晓峰,周文冠,陈锋,帅海威,杨文钰,舒凯. 生物和非生物逆境胁迫下的植物系统信号. 植物学报, 2019, 54(2): 255-264.
Yujia Dai,Xiaofeng Luo,Wenguan Zhou,Feng Chen,Haiwei Shuai,Wenyu Yang,Kai Shu. Plant Systemic Signaling Under Biotic and Abiotic Stresses Conditions. Chinese Bulletin of Botany, 2019, 54(2): 255-264.
信号组分 | 作用方式 | 参考文献 | ||
---|---|---|---|---|
缓慢系统 信号 | 激素类 | 茉莉酸(JA) | 响应创伤、寒冷和昆虫啃食等, 在植物体内发生系 统性积累 | Koo et al., 2009; VanDoorn et al., 2011; Yan et al., 2013 |
水杨酸 (SA) | 响应病原菌侵染, 调控植物免疫反应 | Mou et al., 2003; Lee et al., 2015; Ali et al., 2017 | ||
油菜素甾醇(BR) | 与系统信号组件互作, 调控系统响应, 如活性氧 | Xia et al., 2011, 2015 | ||
RNA | 响应多种胁迫, 作为基因表达产物在维管束中系 统性转运 | Yoo et al., 2004; Suzuki et al., 2015 | ||
小分子肽 | 系统素 | 广泛存在于茄科植物中, 提高植株对植食性动物 的抗性 | Scheer et al., 2003; Coppola et al., 2017 | |
环二肽 | 增强植物对病原菌和病毒侵害的抵抗力, 诱导活 性氧累积及Ca2+信号转导 | Wu et al., 2017 | ||
其它小分子 代谢物 | 氨基酸 代谢物 | 在维管束中, 如壬二酸和哌啶酸, 引起SA的积累, 诱导植物对病原菌的抗性 | Jung et al., 2009; Shah et al., 2014 | |
MeSA | 在维管束中, SA的代谢产物, 是重要的系统信号分子 | Park et al., 2007 | ||
快速系统 信号 | 活性氧 | 迅速产生并响应多种胁迫, 是从胞间信号到系统信 号转导的重要信号形式 | Dat et al., 2000; Hancock et al., 2001; Czarnocka and Karpinski, 2018 | |
Ca2+ | 迅速产生并响应多种胁迫, 细胞内重要的第二信 使, 具有信号转导迅速和分布广泛的特征 | Ranty et al., 2016; Zhu, 2016 | ||
电信号 | 响应创伤和昆虫啃咬等, 以高效的信息传递功能与 其它机制及信号体系发生联合 | Vincill et al., 2012; Gilroy et al., 2016; Hedrich et al., 2016; Szechyńska- Hebda et al., 2017 | ||
其它 | 离子通道 | 如GLR和TPC, 调控电信号和Ca2+等快速信号的胞 间传递, 也为多种信号的偶联提供可能 | Miller et al., 2009; Choi et al., 2016; Gilroy et al., 2016 | |
RBOH | 是调控活性氧信号转导的关键酶类 | Miller et al., 2009; Mittler, 2017 | ||
NPR1 | SA受体, 是SA信号通路的关键组分 | Mou et al., 2003; Niu et al., 2016; Ali et al., 2017 |
表1 植物系统信号中的重要组分
Table 1 Important components of plant systemic signaling
信号组分 | 作用方式 | 参考文献 | ||
---|---|---|---|---|
缓慢系统 信号 | 激素类 | 茉莉酸(JA) | 响应创伤、寒冷和昆虫啃食等, 在植物体内发生系 统性积累 | Koo et al., 2009; VanDoorn et al., 2011; Yan et al., 2013 |
水杨酸 (SA) | 响应病原菌侵染, 调控植物免疫反应 | Mou et al., 2003; Lee et al., 2015; Ali et al., 2017 | ||
油菜素甾醇(BR) | 与系统信号组件互作, 调控系统响应, 如活性氧 | Xia et al., 2011, 2015 | ||
RNA | 响应多种胁迫, 作为基因表达产物在维管束中系 统性转运 | Yoo et al., 2004; Suzuki et al., 2015 | ||
小分子肽 | 系统素 | 广泛存在于茄科植物中, 提高植株对植食性动物 的抗性 | Scheer et al., 2003; Coppola et al., 2017 | |
环二肽 | 增强植物对病原菌和病毒侵害的抵抗力, 诱导活 性氧累积及Ca2+信号转导 | Wu et al., 2017 | ||
其它小分子 代谢物 | 氨基酸 代谢物 | 在维管束中, 如壬二酸和哌啶酸, 引起SA的积累, 诱导植物对病原菌的抗性 | Jung et al., 2009; Shah et al., 2014 | |
MeSA | 在维管束中, SA的代谢产物, 是重要的系统信号分子 | Park et al., 2007 | ||
快速系统 信号 | 活性氧 | 迅速产生并响应多种胁迫, 是从胞间信号到系统信 号转导的重要信号形式 | Dat et al., 2000; Hancock et al., 2001; Czarnocka and Karpinski, 2018 | |
Ca2+ | 迅速产生并响应多种胁迫, 细胞内重要的第二信 使, 具有信号转导迅速和分布广泛的特征 | Ranty et al., 2016; Zhu, 2016 | ||
电信号 | 响应创伤和昆虫啃咬等, 以高效的信息传递功能与 其它机制及信号体系发生联合 | Vincill et al., 2012; Gilroy et al., 2016; Hedrich et al., 2016; Szechyńska- Hebda et al., 2017 | ||
其它 | 离子通道 | 如GLR和TPC, 调控电信号和Ca2+等快速信号的胞 间传递, 也为多种信号的偶联提供可能 | Miller et al., 2009; Choi et al., 2016; Gilroy et al., 2016 | |
RBOH | 是调控活性氧信号转导的关键酶类 | Miller et al., 2009; Mittler, 2017 | ||
NPR1 | SA受体, 是SA信号通路的关键组分 | Mou et al., 2003; Niu et al., 2016; Ali et al., 2017 |
[1] | 帅海威, 孟永杰, 陈锋, 周文冠, 罗晓峰, 杨文钰, 舒凯 ( 2018). 植物荫蔽胁迫的激素信号响应. 植物学报 53, 139-148. |
[2] | Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A ( 2017). Over- expression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8, 1693. |
[3] | Allu AD, Brotman Y, Xue GP, Balazadeh S ( 2016). Trans- cription factor ANAC032 modulates JA/SA signaling in response to Pseudomonas syringae infection. EMBO Rep 17, 1578-1589. |
[4] |
Ananieva EA, Christov KN, Popova LP ( 2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J Plant Physiol 161, 319-328.
DOI URL |
[5] | Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H ( 2018). Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana . Plant Cell Physiol 59, 8-16. |
[6] |
Bourtsala A, Dafnis I, Chroni A, Farmaki T, Galanopoulou D ( 2018). Study of the involvement of phosphatidic acid formation in the expression of wound-responsive genes in cotton. Lipids 53, 589-599.
DOI URL |
[7] | Caarls L, Pieterse CMJ, Van Wees SCM ( 2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6, 170. |
[8] |
Casal JJ ( 2012). Shade avoidance. Arabidopsis Book 10, e0157.
DOI URL |
[9] |
Chen ZX, Zheng ZY, Huang JL, Lai ZB, Fan BF ( 2009). Biosynthesis of salicylic acid in plants. Plant Signal Behav 4, 493-496.
DOI URL |
[10] |
Chiou TJ, Lin SI ( 2011). Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62, 185-206.
DOI URL |
[11] |
Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S ( 2016). Rapid, long-distance electrical and calcium signa- ling in plants. Annu Rev Plant Biol 67, 287-307.
DOI URL |
[12] |
Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S ( 2017). Orchestrating rapid long-distance signaling in plants with Ca 2+, ROS and electrical signals . Plant J 90, 698-707.
DOI URL |
[13] |
Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S ( 2014). Salt stress-induced Ca 2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants . Proc Natl Acad Sci USA 111, 6497-6502.
DOI URL |
[14] |
Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pen- nacchio F, Rao R, Corrado G ( 2017). Plant-to-plant communication triggered by systemin primes antiher- bivore resistance in tomato. Sci Rep 7, 15522.
DOI URL |
[15] |
Czarnocka W, Karpinski S ( 2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122, 4-20.
DOI URL |
[16] |
Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F ( 2000). Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57, 779-795.
DOI URL |
[17] |
Ding CK, Wang C, Gross KC, Smith DL ( 2002). Jasmonate and salicylate induce the expression of pathogenesis- related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214, 895-901.
DOI URL |
[18] |
Durrant WE, Dong X ( 2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209.
DOI URL |
[19] |
Fu ZQ, Dong XN ( 2013). Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64, 839-863.
DOI URL |
[20] |
Gaupels F, Durner J, Kogel KH ( 2017). Production, ampli- fication and systemic propagation of redox messengers in plants? The phloem can do it all! New Phytol 214, 554-560.
DOI URL |
[21] |
Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C ( 2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioes- says 28, 1091-1101.
DOI URL |
[22] |
Gilroy S, Bialasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R ( 2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171, 1606-1615.
DOI URL |
[23] |
Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devi- reddy AR, Mittler R ( 2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic sig- naling. Trends Plant Sci 19, 623-630.
DOI URL |
[24] |
Gorecka M, Alvarez-Fernandez R, Slattery K, McAusland L, Davey PA, Karpinski S, Lawson T, Mullineaux PM ( 2014). Abscisic acid signaling determines susceptibility of bundle sheath cells to photoinhibition in high light-exposed Arabidopsis leaves. Philos Trans R Soc Lond B Biol Sci 369, 20130234.
DOI URL |
[25] |
Ham BK, Lucas WJ ( 2017). Phloem-mobile RNAs as sys- temic signaling agents. Annu Rev Plant Biol 68, 173-195.
DOI URL |
[26] |
Han HN, Wang Q, Wei L, Liang Y, Dai JL, Xia GM, Liu SW ( 2018). Small RNA and degradome sequencing used to elucidate the basis of tolerance to salinity and alkalinity in wheat. BMC Plant Biol 18, 195.
DOI |
[27] |
Hancock JT, Desikan R, Neill SJ ( 2001). Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans 29, 345-349.
DOI URL |
[28] |
He X, Jiang JS, Wang CQ, Dehesh K ( 2017). ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF exp- ression. J Integr Plant Biol 59, 275-287.
DOI URL |
[29] |
Hedrich R, Salvador-Recatalà V, Dreyer I ( 2016). Electrical wiring and long-distance plant communication. Trends Plant Sci 21, 376-387.
DOI URL |
[30] |
Hepler PK ( 2005). Calcium: a central regulator of plant growth and development. Plant Cell 17, 2142-2155.
DOI URL |
[31] |
Hilleary R, Gilroy S ( 2018). Systemic signaling in response to wounding and pathogens. Curr Opin Plant Biol 43, 57-62.
DOI URL |
[32] |
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Green- berg JT ( 2009). Priming in systemic plant immunity. Science 324, 89-91.
DOI URL |
[33] |
Kadota Y, Shirasu K, Zipfel C ( 2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56, 1472-1480.
DOI URL |
[34] |
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P ( 1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657.
DOI URL |
[35] |
Konert G, Rahikainen M, Trotta A, Kangasjärvi S ( 2013). Systemic signaling in light acclimation of leaves. In: Baluška F, ed. Long-distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, Vol. 19. Berlin, Heidelberg: Springer. pp. 231-250.
DOI URL |
[36] |
Koo AJK, Gao XL, Jones AD, Howe GA ( 2009). A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59, 974-986.
DOI URL |
[37] |
Koo AJK, Howe GA ( 2009). The wound hormone jasmonate. Phytochemistry 70, 1571-1580.
DOI URL |
[38] |
Kooijman EE, Burger KNJ ( 2009). Biophysics and function of phosphatidic acid: a molecular perspective. Biochim Biophys Acta 1791, 881-888.
DOI URL |
[39] |
Kosová K, Vitámvás P, Prášil IT, Renaut J ( 2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress res- ponse. J Proteomics 74, 1301-1322.
DOI URL |
[40] |
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K ( 2018). Advan- ces and current challenges in calcium signaling. New Phytol 218, 414-431.
DOI URL |
[41] |
LeBrasseur ND, MacIntosh GC, Pérez-Amador MA, Sai- toh M, Green PJ ( 2002). Local and systemic wound- induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic sig- naling pathway. Plant J 29, 393-403.
DOI URL |
[42] |
Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM ( 2015). Systemic immunity requires SnRK2.8-media- ted nuclear import of NPR1 in Arabidopsis. Plant Cell 27, 3425-3438.
DOI URL |
[43] | Li YZ, Qin L, Zhao JJ, Muhammad T, Cao HH, Li HL, Zhang Y, Liang Y ( 2017). SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato( Sol- anum lycopersicum). PLoS One 12, e0172466. |
[44] |
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P ( 2013). The plant vascular sys- tem: evolution, development and functions. J Integr Plant Biol 55, 294-388.
DOI URL |
[45] |
Machado RAR, Robert CAM, Arce CCM, Ferrieri AP, Xu SQ, Jimenez-Aleman GH, Baldwin IT, Erb M ( 2016). Auxin is rapidly induced by herbivore attack and regulates a subset of systemic, jasmonate-dependent defenses. Plant Physiol 172, 521-532.
DOI URL |
[46] |
McConn M, Creelman RA, Bell E, Mullet JE, Browse J ( 1997). Jasmonate is essential for insect defense in Ara- bidopsis. Proc Natl Acad Sci USA 94, 5473-5477.
DOI URL |
[47] | Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shu- laev V, Dangl JL, Mittler R ( 2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2, ra45. |
[48] |
Mittler R ( 2017). ROS are good. Trends Plant Sci 22, 11-19.
DOI URL |
[49] |
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breuse- gem F ( 2011). ROS signaling: the new wave? Trends Plant Sci 16, 300-309.
DOI URL |
[50] |
Mou ZL, Fan WH, Dong XN ( 2003). Inducers of plant sys- temic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.
DOI URL |
[51] | Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE ( 2013). GLUTAMATE RECEPTOR-LIKE ge- nes mediate leaf-to-leaf wound signaling. Nature 500, 422-426. |
[52] | Niu DD, Wang XJ, Wang YR, Song XO, Wang JS, Guo JH, Zhao HW ( 2016). Bacillus cereus AR156 activates PAMP- triggered immunity and induces a systemic acquired resistance through a NPR1- and SA-dependent signaling pathway. Biochem Biophys Res Commun 469, 120-125. |
[53] | Notaguchi M, Okamoto S ( 2015). Dynamics of long-distance signaling via plant vascular tissues. Front Plant Sci 6, 161. |
[54] |
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF ( 2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.
DOI URL |
[55] | Ramachandran P, Wang GD, Augstein F, De Vries J, Carlsbecker A ( 2018). Continuous root xylem formation and vascular acclimation to water deficit involves endoder- mal ABA signaling via miR165. Development 145, dev 159202. |
[56] | Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Maz- ars C ( 2016). Calcium sensors as key hubs in plant respon- ses to biotic and abiotic stresses. Front Plant Sci 7, 327. |
[57] |
Rasmann S, De Vos M, Casteel CL, Tian DL, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G ( 2012). Her- bivory in the previous generation primes plants for en- hanced insect resistance. Plant Physiol 158, 854-863.
DOI URL |
[58] |
Scheer JM, Pearce G, Ryan CA ( 2003). Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. Proc Natl Acad Sci USA 100, 10114-10117.
DOI URL |
[59] |
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA ( 2014). Signaling by small metabolites in systemic acquired resistance. Plant J 79, 645-658.
DOI URL |
[60] |
Shu K, Qi Y, Chen F, Meng YJ, Luo XF, Shuai HW, Zhou WG, Ding J, Du JB, Liu J, Yang F, Wang Q, Liu WG, Yong TW, Wang XC, Feng YQ, Yang WY ( 2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8, 1372.
DOI URL |
[61] |
Shu K, Zhou WG, Chen F, Luo XF, Yang WY ( 2018). Absci- sic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci 9, 416.
DOI URL |
[62] | Smirnova E, Marquis V, Poirier L, Aubert Y, Zumsteg J, Ménard R, Miesch L, Heitz T ( 2017). Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol Plant 10, 1159-1173. |
[63] | Song GC, Choi HK, Ryu CM ( 2015). Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidop- sis. Front Plant Sci 6, 821. |
[64] | Stephens NR, Qi Z, Spalding EP ( 2008). Glutamate re- ceptor subtypes evidenced by differences in desensiti- zation and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146, 529-538. |
[65] |
Suzuki N, Devireddy AR, Inupakutika MA, Baxter A, Miller G, Song L, Shulaev E, Azad RK, Shulaev V, Mittler R ( 2015). Ultra-fast alterations in mRNA levels uncover mul- tiple players in light stress acclimation in plants. Plant J 84, 760-772.
DOI URL |
[66] |
Szczegielniak J, Borkiewicz L, Szurmak B, Lewand ows- ka-Gnatowska E, Statkiewicz M, Klimecka M, Cieśla J, Muszyńska G ( 2012). Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to woun- ding, regulation by touch and components of jasmonate signaling. Physiol Plant 146, 1-14.
DOI URL |
[67] |
Szechyńska-Hebda M, Lewandowska M, Karpiński S ( 2017). Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol 8, 684.
DOI URL |
[68] |
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K ( 2018). A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature 556, 235-238.
DOI |
[69] |
Tian YC, Fan M, Qin ZX, Lv HJ, Wang MM, Zhang Z, Zhou WY, Zhao N, Li XH, Han C, Ding ZJ, Wang WF, Wang ZY, Bai MY ( 2018). Hydrogen peroxide positively regula- tes brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 9, 1063.
DOI |
[70] |
Tsutsui H, Notaguchi M ( 2017). The use of grafting to study systemic signaling in plants. Plant Cell Physiol 58, 1291-1301.
DOI URL |
[71] |
Van Breusegem F, Bailey-Serres J, Mittler R ( 2008). Unra- veling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147, 978-984.
DOI URL |
[72] |
Van Der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ ( 2013). Salicylic acid suppresses jasmonic acid signaling downstream of SCF COI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59 . Plant Cell 25, 744-761.
DOI URL |
[73] | VanDoorn A, Bonaventure G, Schmidt DD, Baldwin IT ( 2011). Regulation of jasmonate metabolism and activa- tion of systemic signaling in Solanum nigrum : COI1 and JAR4 play overlapping yet distinct roles. New Phytol 190, 640-652. |
[74] |
Vashegyi I, Marozsán-Tóth Z, Galiba G, Dobrev PI, Vankova R, Tóth B ( 2013). Cold response of dedifferen- tiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures. Mol Biotechnol 54, 337-349.
DOI URL |
[75] |
Vincill ED, Bieck AM, Spalding EP ( 2012). Ca 2+ conduction by an amino acid-gated ion channel related to glutamate receptors . Plant Physiol 159, 40-46.
DOI URL |
[76] |
Vlot AC, Klessig DF, Park SW ( 2008). Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11, 436-442.
DOI URL |
[77] | Volkov AG ( 2019). Signaling in electrical networks of the Venus flytrap ( Dionaea muscipula Ellis). Bioelectrochemi- stry 125, 25-32. |
[78] |
Wang XM, Devaiah SP, Zhang WH, Welti R ( 2006). Signa- ling functions of phosphatidic acid. Prog Lipid Res 45, 250-278.
DOI URL |
[79] |
Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang XM ( 2002). Profiling membrane lipids in plant stress responses. Role of pho- spholipase Dα in freezing-induced lipid changes in Ara- bidopsis. J Biol Chem 277, 31994-32002.
DOI URL |
[80] | Wu LM, Wu HJ, Chen LN, Zhang HY, Gao XW ( 2017). Induction of systemic disease resistance in Nicotiana ben- thamiana by the cyclodipeptides cyclo (L-Pro-L-Pro) and cyclo (D-Pro-D-Pro). Mol Plant Pathol 18, 67-74. |
[81] | Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen ZX, Yu JQ ( 2011). Induction of systemic stress tolerance by brassino- steroid in Cucumis sativus . New Phytol 191, 706-720. |
[82] |
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ ( 2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66, 2839-2856.
DOI URL |
[83] | Xu SM, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T ( 2018). Tomato PEPR1 ORTHO- LOG RECEPTOR-LIKE KINASE 1 regulates responses to systemin, necrotrophic fungi, and insect herbivory. Plant Cell 30, 2214-2229. |
[84] |
Xuan W, Beeckman T, Xu G ( 2017). Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol 39, 57-65.
DOI URL |
[85] |
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li CB, Li C ( 2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9, e1003964.
DOI URL |
[86] |
Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer- Evans S, Lee YM, Lough TJ, Lucas WJ ( 2004). A systemic small RNA signaling system in plants. Plant Cell 16, 1979-2000.
DOI URL |
[87] |
Yuan HM, Liu WC, Lu YT ( 2017). CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 21, 143-155.
DOI URL |
[88] |
Zandalinas SI, Mittler R ( 2018). ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 122, 21-27.
DOI URL |
[89] |
Zhang HY, Hu YY ( 2017). Long-distance transport of pro- systemin messenger RNA in tomato. Front Plant Sci 8, 1894.
DOI URL |
[90] |
Zhang HY, Yu PL, Zhao JH, Jiang HL, Wang HY, Zhu YF, Botella MA, Šamaj J, Li CY, Lin JX ( 2018). Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol 217, 799-812.
DOI URL |
[91] |
Zhu JK ( 2016). Abiotic stress signaling and responses in plants. Cell 167, 313-324.
DOI URL |
[1] | 朱晓博, 董张, 祝梦瑾, 胡晋, 林程, 陈敏, 关亚静. 重要的种子储存物质长寿命mRNA[J]. 植物学报, 2024, 59(3): 355-372. |
[2] | 罗兰莎, 宋雯佩, 化青珠, 李大卫, 梁红, 张宪智. 植物性别决定基因及其表观遗传调控研究进展[J]. 植物学报, 2024, 59(2): 278-290. |
[3] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[4] | 李苗, 要晨阳, 陈小勇. 环境RNA技术在水生生物监测中的应用[J]. 生物多样性, 2023, 31(5): 23062-. |
[5] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[6] | 袁民航, 辛秀芳. 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析[J]. 植物学报, 2023, 58(5): 682-686. |
[7] | 刘晟宇, 刘晓斌, 朱家富, 苏京, 董志诚, 刘敏. Tn5转座酶融合蛋白在CUT&Tag实验中的优化及评价[J]. 植物学报, 2023, 58(4): 602-611. |
[8] | 王雷, 种康. 鱼和熊掌的选择: 反向重复序列变异介导的玉米环境适应与产量平衡[J]. 植物学报, 2022, 57(5): 555-558. |
[9] | 周玉萍, 颜嘉豪, 田长恩. 保卫细胞中ABA信号调控机制研究进展[J]. 植物学报, 2022, 57(5): 684-696. |
[10] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[11] | 胡海涛, 钱婷婷, 杨玲. 基于H2DCFDA荧光探针的植物活性氧检测方法[J]. 植物学报, 2022, 57(3): 320-326. |
[12] | 吴丹丹, 陈永坤, 杨宇, 孔春艳, 龚明. 小桐子半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对低温锻炼的响应[J]. 植物学报, 2021, 56(5): 544-558. |
[13] | 胡滨滨, 薛治慧, 张翠. 植物小RNA荧光原位杂交实验方法[J]. 植物学报, 2021, 56(3): 330-338. |
[14] | 王伟, 孙蒙祥. 花粉外被蛋白B类小肽, 花粉打开柱头大门的一把钥匙[J]. 植物学报, 2021, 56(2): 147-150. |
[15] | 王伟, 唐定中. 两类免疫受体强强联手筑牢植物免疫防线[J]. 植物学报, 2021, 56(2): 142-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||