植物学报 ›› 2024, Vol. 59 ›› Issue (5): 774-782.DOI: 10.11983/CBB24107 cstr: 32102.14.CBB24107
收稿日期:
2024-07-18
接受日期:
2024-08-20
出版日期:
2024-09-10
发布日期:
2024-08-22
通讯作者:
陈春丽
基金资助:
农业生物育种国家科技重大专项(No.2023ZD04073)和华中农业大学研究生培养条件建设(No.2024SC03)
Xia Chunjiao, Li Yunguang, Xia Shu, Pang Wei, Chen Chunli*()
Received:
2024-07-18
Accepted:
2024-08-20
Online:
2024-09-10
Published:
2024-08-22
Contact:
Chen Chunli
摘要: 流式细胞术是一种高通量技术, 可以同时快速检测单个颗粒物的多项物理及生物学特征。随着测序成本的大幅降低, 流式细胞术在植物基因组学高通量样品获取中的作用日益凸显。该文以水稻(Oryza sativa)和大豆(Glycine max)为例, 详细介绍了应用流式细胞术对植物细胞核进行精细分选以及后续的ATAC-seq和RNA-seq实验分析流程, 为农业生物育种中基因的高效挖掘提供了优选工具。同时针对实验操作中的关键技术和常见问题, 如细胞核制备注意事项、分选纯度与效率的平衡及单细胞分选调试方法进行分析并提出建议, 为植物科学工作者应用流式细胞术开展基因组学研究提供参考。
夏春皎, 李运广, 夏姝, 庞伟, 陈春丽. 植物基因组学中的流式细胞分析及分选技术. 植物学报, 2024, 59(5): 774-782.
Xia Chunjiao, Li Yunguang, Xia Shu, Pang Wei, Chen Chunli. Flow Cytometric Analysis and Sorting in Plant Genomics. Chinese Bulletin of Botany, 2024, 59(5): 774-782.
图1 流式细胞仪的基本结构 SSC: 侧向散射通道; FSC: 前向散射通道; PMT: 光电倍增管
Figure 1 Basic structure of flow cytometer SSC: Side scatter channel; FSC: Forward scatter channel; PMT: Photomultiplier tube
Names | Components | Applications |
---|---|---|
Galbraith’s (Galbraith et al., | 45 mmol∙L-1 MgCl2, 30 mmol∙L-1 sodium citrate, 20 mmol∙L-1 MOPS, 0.1% (v/v) TritonX-100, pH7.0 | Arabidopsis thaliana, Glycine max |
LB01 (Dpooležel et al., | 15 mmol∙L-1 Tris, 2 mmol∙L-1 Na2EDTA, 0.5 mmol∙L-1 spermine, 80 mmol∙L-1 KCl, 20 mmol∙L-1 NaCl, 0.1% (v/v) TritonX-100, 15 mmol∙L-1 β-mercaptoethanol, pH7.0-8.0 | Oryza sativa, Chrysanthemum indicum, Solanum lycopersicum |
Otto’s (Otto, | OTTO I: 100 mmol∙L-1 citric acid, 0.5% (v/v) Tween-20, pH2.0- 3.0; OTTO II: 400 mmol∙L-1 Na2HPO4·12H2O, pH8.0-9.0 | Ranunculus japonicus, O. sativa |
Tris-MgCl2 (Pfosser et al., | 200 mmol∙L-1 Tris, 4 mmol∙L-1 MgCl2·6H2O, 0.5% (v/v) TritonX- 100, pH7.5 | Centaurea cyanus, Celtis au- stralis |
GPB (Loureiro et al., | 0.5 mmol∙L-1 spermine, 30 mmol∙L-1 sodium citrate, 20 mmol∙L-1 MOPS, 80 mmol∙L-1 KCl, 20 mmol∙L-1 NaCl, 0.5% (v/v) TritonX- 100, pH7.0 | O. sativa, Actinidia chinensis |
WPB (Loureiro et al., | 0.2 mol∙L-1 Tris-HCl, 4 mmol∙L-1 MgCl2∙6H2O, 2 mmol∙L-1 EDTA Na2·2H2O, 86 mmol∙L-1 NaCl, 10 mmol∙L-1 sodium pyrosulfite, 1% PVP-10, 1% (v/v) TritonX-100, pH7.5 | Vitis vinifera, Quercus robur |
PVPK12-mGB2 (Zhang and Feng, | 30 mmol∙L-1 sodium citrate, 45 mmol∙L-1 MgCl2, 20 mmol∙L-1 MO- PS, 20 mmol∙L-1 NaCl, 20 mmol∙L-1 EDTA Na2·2H2O, 0.1% (v/v) TritonX-100, 0.5% (v/v) Tween-20, 10 μL·mL-1 β-mercaptoethanol, 1%-2% PVPK12, pH7.0 | Silicone fast-drying plant ma- terials |
表1 几种代表性的植物细胞核解离缓冲液
Table 1 Several representative plant cell nucleus dissociation buffers
Names | Components | Applications |
---|---|---|
Galbraith’s (Galbraith et al., | 45 mmol∙L-1 MgCl2, 30 mmol∙L-1 sodium citrate, 20 mmol∙L-1 MOPS, 0.1% (v/v) TritonX-100, pH7.0 | Arabidopsis thaliana, Glycine max |
LB01 (Dpooležel et al., | 15 mmol∙L-1 Tris, 2 mmol∙L-1 Na2EDTA, 0.5 mmol∙L-1 spermine, 80 mmol∙L-1 KCl, 20 mmol∙L-1 NaCl, 0.1% (v/v) TritonX-100, 15 mmol∙L-1 β-mercaptoethanol, pH7.0-8.0 | Oryza sativa, Chrysanthemum indicum, Solanum lycopersicum |
Otto’s (Otto, | OTTO I: 100 mmol∙L-1 citric acid, 0.5% (v/v) Tween-20, pH2.0- 3.0; OTTO II: 400 mmol∙L-1 Na2HPO4·12H2O, pH8.0-9.0 | Ranunculus japonicus, O. sativa |
Tris-MgCl2 (Pfosser et al., | 200 mmol∙L-1 Tris, 4 mmol∙L-1 MgCl2·6H2O, 0.5% (v/v) TritonX- 100, pH7.5 | Centaurea cyanus, Celtis au- stralis |
GPB (Loureiro et al., | 0.5 mmol∙L-1 spermine, 30 mmol∙L-1 sodium citrate, 20 mmol∙L-1 MOPS, 80 mmol∙L-1 KCl, 20 mmol∙L-1 NaCl, 0.5% (v/v) TritonX- 100, pH7.0 | O. sativa, Actinidia chinensis |
WPB (Loureiro et al., | 0.2 mol∙L-1 Tris-HCl, 4 mmol∙L-1 MgCl2∙6H2O, 2 mmol∙L-1 EDTA Na2·2H2O, 86 mmol∙L-1 NaCl, 10 mmol∙L-1 sodium pyrosulfite, 1% PVP-10, 1% (v/v) TritonX-100, pH7.5 | Vitis vinifera, Quercus robur |
PVPK12-mGB2 (Zhang and Feng, | 30 mmol∙L-1 sodium citrate, 45 mmol∙L-1 MgCl2, 20 mmol∙L-1 MO- PS, 20 mmol∙L-1 NaCl, 20 mmol∙L-1 EDTA Na2·2H2O, 0.1% (v/v) TritonX-100, 0.5% (v/v) Tween-20, 10 μL·mL-1 β-mercaptoethanol, 1%-2% PVPK12, pH7.0 | Silicone fast-drying plant ma- terials |
图2 大豆根瘤细胞核不同DNA倍性分析 (A) 通过FSC-A与SSC-A双参数设定总细胞核门; (B) 通过DAPI-W和DAPI-A设定单细胞核门; (C) 通过DAPI-A直方图设定不同DNA倍性的细胞核门。SSC和FSC同图1。DAPI: 4,6-二脒基-2-苯基吲哚
Figure 2 Analysis of different DNA ploidies in nuclei of soybean nodule cells (A) Total nucleus gate was set by FSC-A and SSC-A dual parameters; (B) Single nuclei gate was set by DAPI-W and DAPI-A; (C) Nuclei gate for different DNA ploidies was set by DAPI-A histogram. SSC and FSC are the same as shown in Figure 1. DAPI: 4,6-diamidino-2-phenylindole
[1] | Bressan D, Battistoni G, Hannon GJ (2023). The dawn of spatial omics. Science 381, eabq4964. |
[2] | Büscher M (2019). Flow cytometry instrumentation—an overview. Curr Protoc Cytom doi: 10.1002/cpcy.52. |
[3] | Cápal P, Said M, Molnár I, Doležel J (2023). Flow cytometric analysis and sorting of plant chromosomes. In: Heitkam T, Garcia S, eds. Plant Cytogenetics and Cytogenomics. New York: Humana. pp. 177-200. |
[4] | Decaestecker W, Bollier N, Buono RA, Nowack MK, Jacobs TB (2022). Protoplast preparation and fluorescence- activated cell sorting for the evaluation of targeted mutagenesis in plant cells. In: Wang K, Zhang F, eds. Protoplast Technology. New York: Humana. pp. 205-221. |
[5] | Doležel J, Číhalíková J, Lucretti S (1992). A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188, 93-98. |
[6] | Doležel J, Göhde W (1995). Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19, 103-106. |
[7] | Doležel J, Greilhuber J, Suda J (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2, 2233-2244. |
[8] | Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D (2021). Chromosome analysis and sorting. Cytometry A 99, 328- 342. |
[9] | Dpooležel J, Binarová P, Lcretti S (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31, 113-120. |
[10] | Fan W, Xia CJ, Wang SX, Liu J, Deng LJ, Sun SY, Wang XL (2022). Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean. New Phytol 234, 1018-1030. |
[11] | Galbraith DW, Afonso CL, Harkins KR (1984). Flow sorting and culture of protoplasts: conditions for high-frequency recovery, growth and morphogenesis from sorted protoplasts of suspension cultures of nicotiana. Plant Cell Rep 3, 151-155. |
[12] | Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049-1051. |
[13] | Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL, Lambert GM, Araúzo- Bravo MJ, Lee J, Fishman M, Robbins GE, Lin XY, Venepally P, Badger JH, Galbraith DW, Gage FH, Lasken RS (2013). RNA-sequencing from single nuclei. Proc Natl Acad Sci USA 110, 19802-19807. |
[14] | Guedes JG, Guimaraes AL, Carqueijeiro I, Gardner R, Bispo C, Sottomayor M (2022). Isolation of specialized plant cells by fluorescence-activated cell sorting. In: Fett-Neto AG,ed. Plant Secondary Metabolism Engineering. New York: Humana. pp. 193-200. |
[15] | Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu XS, Raju SK, Ramírez CO, Jackson D, Groen SC, Gillis J, Birnbaum KD (2023). A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785-791. |
[16] | Hang HY, Liu CC, Ren DD (2019). Development, application and prospection of flow cytometry. China Biotechnol 39(9), 68-83. (in Chinese) |
杭海英, 刘春春, 任丹丹 (2019). 流式细胞术的发展、应用及前景. 中国生物工程杂志 39(9), 68-83. | |
[17] | Kamentsky LA, Melamed MR, Derman H (1965). Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150, 630-631. |
[18] | Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, Urich MA, Han XW, Lister R, Benfey PN, Ecker JR (2016). Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2, 16058. |
[19] | Li F, Hu Y, Wang F, Zhang Z, Liu XL, Bai SL, He YK (2010). Flow cytometry sorting of early developmental non- hair cells in roots of Arabidopsis thaliana. Chin Bull Bot 45, 460-465. (in Chinese) |
李斐, 胡勇, 王帆, 张珍, 刘祥林, 白素兰, 何奕昆 (2010). 利用流式细胞仪分选拟南芥根尖发育早期非根毛细胞. 植物学报 45, 460-465. | |
[20] | Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HCW, Zhang YS, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16, 1295-1310. |
[21] | Loureiro J, Rodriguez E, Doležel J, Santos C (2007). Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100, 875-888. |
[22] | Marx V (2016). Plants: a tool box of cell-based assays. Nat Methods 13, 551-554. |
[23] | Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011). Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23, 1249-1263. |
[24] | Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, Iino T, Arai F, Endo T, Fujiwaki Y, Fukuzawa H, Hase M, Hayakawa T, Hiramatsu K, Hoshino Y, Inaba M, Ito T, Karakawa H, Kasai Y, Koizumi K, Lee S, Lei C, Li M, Maeno T, Matsusaka S, Murakami D, Nakagawa A, Oguchi Y, Oikawa M, Ota T, Shiba K, Shintaku H, Shirasaki Y, Suga K, Suzuki Y, Suzuki N, Tanaka Y, Tezuka H, Toyokawa C, Yalikun Y, Yamada M, Yamagishi M, Yamano T, Yasumoto A, Yatomi Y, Yazawa M, Di Carlo D, Hosokawa Y, Uemura S, Ozeki Y, Goda K (2018). Intelligent image-activated cell sorting. Cell 175, 266-276. |
[25] | Ortiz-Ramírez C, Arevalo ED, Xu XS, Jackson DP, Birnbaum KD (2018). An efficient cell sorting protocol for maize protoplasts. Curr Protoc Plant Biol 3, e20072. |
[26] | Otto FJ (1992). Preparation and staining of cells for high- resolution DNA analysis. In: Radbruch A, ed. Flow Cytometry and Cell Sorting. Berlin: Springer. pp. 65-68. |
[27] | Petrovská B, Jeřábková H, Chamrád I, Vrána J, Lenobel R, Uřinovská J, Šebela M, Doležel J (2014). Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet Genome Res 143, 78-86. |
[28] | Pfosser M, Heberle-Bors E, Amon A, Lelley T (1995). Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat- rye addition lines. Cytometry 21, 387-393. |
[29] | Reichard A, Asosingh K (2019). Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A 95, 219-226. |
[30] | Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004). Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39, 960-968. |
[31] | Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J (2019). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12, 180096. |
[32] | Schraivogel D, Kuhn TM, Rauscher B, Rodríguez-Martínez M, Paulsen M, Owsley K, Middlebrook A, Tischer C, Ramasz B, Ordoñez-Rueda D, Dees M, Cuylen- Haering S, Diebold E, Steinmetz LM (2022). High-speed fluorescence image-enabled cell sorting. Science 375, 315- 320. |
[33] | Shapiro HM (2003). Practical Flow Cytometry, 4th edn. New York: Wiley-Liss. pp. 73-100. |
[34] | Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW (2022). Application-based guidelines for best practices in plant flow cytometry. Cytometry A 101, 749-781. |
[35] | Smith JP, Sheffield NC (2020). Analytical approaches for ATAC-seq data analysis. Curr Protoc Hum Genet 106, e101. |
[36] | Sun GL, Xia MZ, Li JP, Ma W, Li QZ, Xie JJ, Bai SL, Fang SS, Sun T, Feng XL, Guo GH, Niu YL, Hou JY, Ye WL, Ma JC, Guo SY, Wang HL, Long Y, Zhang XB, Zhang JL, Zhou H, Li BZ, Liu J, Zou CS, Wang H, Huang JL, Galbraith DW, Song CP (2022). The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 34, 1890-1911. |
[37] | Taher TEI (2017). Monitoring promoter activity by flow cytometry. In: Gould D, ed. Mammalian Synthetic Promoters. New York: Humana. pp. 65-73. |
[38] | The International Wheat Genome Sequencing Consortium IWGSC (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788. |
[39] | Xu XS, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu ZF, Wang LY, Fox N, Wang XF, Drenkow J, Luo AD, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D (2021). Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 56, 557-568. |
[40] | Zhang JD, Feng M (2023). A plant sample optimal pretreatment for flow cytometric analysis. Chin Bull Bot 58, 285-297. (in Chinese) |
张晋丹, 冯旻 (2023). 一种提升流式细胞术分析效果的前处理方法. 植物学报 58, 285-297. | |
[41] | Zhu T, Liao KY, Zhou RF, Xia CJ, Xie WB (2020). ATAC- seq with unique molecular identifiers improves quantification and footprinting. Commun Biol 3, 675. |
[42] | Zhu T, Xia CJ, Yu RR, Zhou XK, Xu XB, Wang L, Zong ZX, Yang JJ, Liu YM, Ming LC, You YX, Chen DJ, Xie WB (2024). Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat Commun 15, 6562. |
[1] | 王振宇 黄志群. 亚热带27种木本植物叶片性状对植食作用的影响: 验证生长-防御权衡假说[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 牛云明 贾国栋 王欣 刘子赫. 庐山不同海拔植被蒸腾水龄动态及用水策略[J]. 植物生态学报, 2024, 48(9): 0-0. |
[4] | 陈炫铮, 朱耀军, 高居娟, 刘一凡, 王荣, 方涛, 罗芳丽, 薛伟, 于飞海. 植物-土壤反馈时空变异研究进展[J]. 植物生态学报, 2024, 48(8): 955-966. |
[5] | 李邦泽, 张树仁. 中国莎草科最新物种名录和分类纲要[J]. 生物多样性, 2024, 32(7): 24106-. |
[6] | 郑博瀚, 陈鑫瑶, 倪健. 中国维管植物生长型和生活型数据集[J]. 生物多样性, 2024, 32(7): 23468-. |
[7] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[8] | 江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718. |
[9] | 胡宗刚. 抗战胜利后中美曾筹划合编《中国植物志》[J]. 生物多样性, 2024, 32(6): 24220-. |
[10] | 何花, 谭敦炎, 杨晓琛. 被子植物隐性雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[11] | 胡心怡, 穆丹, 张惠雯, 秦华光, 白雅茹, 龙洪婕, 徐颖睿, 张雯菁, 邓洋, 周洲, 胡洁怡, 毕晨悦, 沈昭阳, 孙廷哲, 饶玉春. 基于高校植物学课程的生物科普教育探索[J]. 植物学报, 2024, 59(6): 0-0. |
[12] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[13] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[14] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[15] | 胡蝶, 蒋欣琪, 戴志聪, 陈戴一, 张雨, 祁珊珊, 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||