植物学报 ›› 2024, Vol. 59 ›› Issue (5): 763-773.DOI: 10.11983/CBB23159 cstr: 32102.14.CBB23159
收稿日期:
2023-11-29
接受日期:
2024-05-04
出版日期:
2024-09-10
发布日期:
2024-08-19
通讯作者:
姚纲
基金资助:
Wenna Chen1, Liangtao Li1, Lu Zhou1, Gang Yao2,*()
Received:
2023-11-29
Accepted:
2024-05-04
Online:
2024-09-10
Published:
2024-08-19
Contact:
Gang Yao
摘要: 太行花属(Taihangia)是分布于太行山南段的蔷薇科特有属, 含1种(太行花(T. rupestris)) 2变种(太行花原变种(T. rupestris var. rupestris)与缘毛太行花(T. rupestris var. ciliate))。然而, 这2个变种的分类地位尚存争议, 且该属的演化历史研究较欠缺。采用质体系统发生基因组学手段构建了太行花属系统发生树, 结合分化时间估算对该属起源演化时间进行推断。结果表明, 太行花属是1个获得很高支持的单系, 太行花2个变种各自形成很好的单系, 支持二者各自独立的分类地位。分化时间估算结果表明, 太行花属在上新世-更新世边界附近时期约2.6×106年前开始分化, 2个变种内部谱系分支间的分化则主要发生在更新世后期。结合太行山南段在不同地质时期的隆升历史, 认为太行山南段在上新世与更新世期间的快速隆升可能很大程度地促进了太行花属不同谱系分支的分化。研究结果不仅深化了对太行花属植物演化历史的认识, 还为山体隆升促进山地类群多样性形成提供了新的研究案例。
陈文娜, 李良涛, 周璐, 姚纲. 太行山近期隆升促进太行花属(蔷薇科)谱系分化. 植物学报, 2024, 59(5): 763-773.
Wenna Chen, Liangtao Li, Lu Zhou, Gang Yao. Recent Uplift of the Taihang Mountains Triggered the Lineage Diversification within the Genus Taihangia (Rosaceae). Chinese Bulletin of Botany, 2024, 59(5): 763-773.
Taxon/individual | Vouchers | Locality | NCBI accession number |
---|---|---|---|
T. rupestris var. rupestris_YGS01 | Chen WN-102 | Yidoushui village, Xiuwu Hsien, Henan province, China | OR795017 |
T. rupestris var. rupestris_YGS02 | Chen WN-103 | Yidoushui village, Xiuwu Hsien, Henan province, China | OR795018 |
T. rupestris var. ciliate_ZQG01 | Chen WN-104 | Zhaiqinggou village, Wu’an City, Hebei province, China | OR795020 |
T. rupestris var. ciliate_ZQG02 | Chen WN-105 | Zhaiqinggou village, Wu’an City, Hebei province, China | OR795021 |
T. rupestris var. ciliate_CYG | Chen WN-106 | Chaoyanggou village, Wu’an City, Hebei province, China | OR795019 |
T. rupestris var. ciliate_FJ | Chen WN-107 | Fenjiao village, Wu’an City, Hebei province, China | OR795022 |
T. rupestris var. ciliate_LG | Chen WN-108 | Lianggou village, Wu’an City, Hebei province, China | OR795023 |
表1 本研究新测序的太行花属取样信息
Table 1 Information of materials of Taihangia newly sequenced in the present study
Taxon/individual | Vouchers | Locality | NCBI accession number |
---|---|---|---|
T. rupestris var. rupestris_YGS01 | Chen WN-102 | Yidoushui village, Xiuwu Hsien, Henan province, China | OR795017 |
T. rupestris var. rupestris_YGS02 | Chen WN-103 | Yidoushui village, Xiuwu Hsien, Henan province, China | OR795018 |
T. rupestris var. ciliate_ZQG01 | Chen WN-104 | Zhaiqinggou village, Wu’an City, Hebei province, China | OR795020 |
T. rupestris var. ciliate_ZQG02 | Chen WN-105 | Zhaiqinggou village, Wu’an City, Hebei province, China | OR795021 |
T. rupestris var. ciliate_CYG | Chen WN-106 | Chaoyanggou village, Wu’an City, Hebei province, China | OR795019 |
T. rupestris var. ciliate_FJ | Chen WN-107 | Fenjiao village, Wu’an City, Hebei province, China | OR795022 |
T. rupestris var. ciliate_LG | Chen WN-108 | Lianggou village, Wu’an City, Hebei province, China | OR795023 |
Taxon | NCBI accession number | Taxon | NCBI accession number |
---|---|---|---|
Acaena pinnatifida | KY419984 | Rosa lichiangensis | KY419934 |
Comarum salesovianum | KY420034 | R. persica | KY419918 |
Dryas drummondii | KY419952 | Rubus fockeanus | KY420018 |
Fallugia paradoxa | KY419999 | Ru. niveus | KY419961 |
Fragaria vesca | JF345175 | Sanguisorba officinalis | KY419975 |
Geum aleppicum | NC_060733 | Spenceria ramalana | KY419995 |
G. macrophyllum | NC_053765 | Taihangia rupestris var. rupestris | MZ151697 |
G. urbanum | ON556622 | T. rupestris var. rupestris | NC_037392 |
Hagenia abyssinica | KY420026 | T. rupestris var. rupestris | MK567781 |
Potentilla purpurea | KY419953 | T. rupestris var. ciliate | MZ151698 |
表2 从NCBI数据库下载的质体基因组序列信息
Table 2 Information of the plastid genomes downloaded from NCBI database
Taxon | NCBI accession number | Taxon | NCBI accession number |
---|---|---|---|
Acaena pinnatifida | KY419984 | Rosa lichiangensis | KY419934 |
Comarum salesovianum | KY420034 | R. persica | KY419918 |
Dryas drummondii | KY419952 | Rubus fockeanus | KY420018 |
Fallugia paradoxa | KY419999 | Ru. niveus | KY419961 |
Fragaria vesca | JF345175 | Sanguisorba officinalis | KY419975 |
Geum aleppicum | NC_060733 | Spenceria ramalana | KY419995 |
G. macrophyllum | NC_053765 | Taihangia rupestris var. rupestris | MZ151697 |
G. urbanum | ON556622 | T. rupestris var. rupestris | NC_037392 |
Hagenia abyssinica | KY420026 | T. rupestris var. rupestris | MK567781 |
Potentilla purpurea | KY419953 | T. rupestris var. ciliate | MZ151698 |
图1 基于83个质体基因序列采用最大似然法构建的系统发生树 系统发生节点附近左侧分支上、下的数字分别表示基于贝叶斯分析所得后验概率值与最大似然法分析所得自展值。‒表示该节点未获得支持或后验概率值小于0.50或自展值小于50%。箭头示太行花属冠群节点。
Figure 1 Maximum likelihood (ML) tree inferred from the sequence matrix including 83 plastid genes Posterior probability in Bayesian inference and bootstrap value in ML analysis are indicated above and below the stem branch of each phylogenetic node, respectively. Dashes denote that the phylogenetic node associated was not supported or posterior probability <0.50 or the bootstrap value <50%. The arrowhead indicates crown node of Taihangia.
图2 基于83个质体基因构建的序列矩阵和5个时间校准点(i‒v)通过BEAST分析所得分化时间 校准点i: 仙女木亚科与蔷薇亚科之间的分化节点; 校准点ii: 悬钩子族干群节点; 校准点iii: 蔷薇族干群节点; 校准点iv: 龙牙草族冠群节点; 校准点v: 路边青属与飞羽木属之间的分化节点。蓝色条块示系统发生节点分化时间95%最大后验密度区间。野外活体图为缘毛太行花。Pl.:上新世; Qu.:第四纪(含更新世与全新世); Hol.: 全新世; Ma: 百万年前
Figure 2 Divergence time obtained through BEAST analysis based on the sequence matrix of 83 plastid genes and 5 calibration points (i to v) Point i: The split between Dryadoideae and Rosoideae; Point ii: Stem node of Rubeae; Point iii: Stem node of Roseae; Point iv: Crown node of Agrimonieae; Point v: Split between Fallugia and Geum. Blue bars represent 95% highest posterior density for phylogenetic node. The field image belongs to Taihangia rupestris var. ciliate. Pl.: Pliocene; Qu.: Quaternary (Pleistocene+Holocene); Hol.: Holocene; Ma: Million years ago
[1] | Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. |
[2] | Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10, e1003537. |
[3] | Chen X, Li JL, Cheng T, Zhang W, Liu YL, Wu P, Yang XY, Wang L, Zhou SL (2020). Molecular systematics of Rosoideae (Rosaceae). Plant Syst Evol 306, 9. |
[4] | Cheng YQ, Duan JM, Jiao ZB, Wang GG, Yan FM, Wang HW (2016). Cytoplasmic DNA disclose high nucleotide diversity and different phylogenetic pattern in Taihangia rupestris Yu et Li. Biochem Syst Ecol 66, 201-208. |
[5] | Ding WN, Ree RH, Spicer RA, Xing YW (2020). Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578-581. |
[6] | Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11-15. |
[7] | Duan JM (2013). The Research on Genetic Diversify and Molecular Phylogeography Population of Taihangia rupestris Yu et Li. Master’s thesis. Zhengzhou: Henan Agricultural University. pp. 1-45. (in Chinese) |
段景勉 (2013). 太行花种群遗传多样性与分子谱系地理学研究. 硕士论文. 郑州: 河南农业大学. pp. 1-45. | |
[8] | Edelman DW (1975). The Eocene Germer Basin Flora of South-central Idaho. Master’s thesis. Moscow: University of Idaho. pp. 1-142. |
[9] | Fang XM (2010). Genetic Diversity Study of Rare and Precious Species Taihangia rupestris. Master’s thesis. Zhengzhou: Henan Agricultural University. pp. 1-48. (in Chinese) |
方向民 (2010). 珍稀植物太行花的遗传多样性研究. 硕士论文. 郑州: 河南农业大学. pp. 1-48. | |
[10] | Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, Matuszak S, Sun H, Yuan YM, Struwe L, Muellner- Riehl AN (2016). Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr 43, 1967-1978. |
[11] | Feng Z, Zheng Y, Jiang Y, Li LZ, Luo GM, Huang LF (2022). The chloroplast genomes comparative analysis of Taihangia rupestris var. rupestris and Taihangia rupestris var. ciliate, two endangered and endemic cliff plants in Tai- hang Mountain of China. South Afr J Bot 148, 499-509. |
[12] | Geng X, Ye J, Jian YH, Zhang HM (2009). Advances on the study of special rare and endangered plant Taihangia rupestris in China. J Anhui Agri Sci 35, 8965-8966, 8973. (in Chinese) |
耿霄, 叶嘉, 焦云红, 张会敏 (2009). 中国特有珍稀濒危植物太行花的研究进展. 安徽农业科学 35, 8965-8966, 8973. | |
[13] | He WC, Chen CJ, Xiang KL, Wang J, Zheng P, Tembrock LR, Jin DM, Wu ZQ (2021). The history and diversity of rice domestication as resolved from 1464 complete plastid genomes. Front Plant Sci 12, 781793. |
[14] | Hou ZG, Li JB, Li SQ (2014). Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species. Zool J Linn Soc 170, 591-633. |
[15] | Hughes CE, Atchison GW (2015). The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol 207, 275-282. |
[16] | Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ (2020a). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21, 241. |
[17] | Jin WY, Li HW, Wei R, Huang BH, Liu B, Sun TT, Mabberley DJ, Liao PC, Yang Y (2020b). New insights into biogeographical disjunctions between Taiwan and the Eastern Himalayas: the case of Prinsepia (Rosaceae). Ta- xon 69, 278-289. |
[18] | Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780. |
[19] | Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. |
[20] | Li WG, Zhang LH, Zhang YD, Wang GD, Song DY, Zhang YW (2017). Selection and validation of appropriate reference genes for quantitative real-time PCR normalization in staminate and perfect flowers of andromonoecious Taihangia rupestris. Front Plant Sci 8, 729. |
[21] | Lin N, Landis JB, Sun YX, Huang XH, Zhang X, Liu Q, Zhang HJ, Sun H, Wang HC, Deng T (2021). Demographic history and local adaptation of Myripnoisdioica (Asteraceae) provide insight on plant evolution in northern China flora. Ecol Evol 11, 8000-8013. |
[22] | Ma YS, Zhao X, Zhao XT, Wu ZH, Gao LZ, Zhang YQ, Zhao T, Wu ZH, Yang SZ (2007). The Cenozoic rifting and uplifting process on the Southern margin of Taihangshan uplift. Acta Geoscient Sin 28, 219-233. (in Chinese) |
马寅生, 赵逊, 赵希涛, 吴中海, 高林志, 张岳桥, 赵汀, 吴珍汉, 扬守政 (2007). 太行山南缘新生代的隆升与断陷过程. 地球学报 28, 219-233. | |
[23] | Posada D (2008). jModelTest: phylogenetic model averaging. Mol Biol Evol 25, 1253-1256. |
[24] | Protopopova M, Pavlichenko V, Chepinoga V, Gnutikov A, Adelshin R (2023). Waldsteinia within Geums. l. (Rosaceae): main aspects of phylogeny and speciation history. Diversity 15, 479. |
[25] | Qin M, Zhu CJ, Yang JB, Vatanparast M, Schley R, Lai Q, Zhang DY, Tu TY, Klitgård BB, Li SJ, Zhang DX (2022). Comparative analysis of complete plastid genome reveals powerful barcode regions for identifying wood of Dalbergia odorifera and D. tonkinensis (Leguminosae). J Syst Evol 60, 73-84. |
[26] | Qu XJ, Moore MJ, Li DZ, Yi TS (2019). PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. |
[27] | Rambaut A, Suchard MA, Drummond AJ (2014). Tracer version 1. 6. http://beast.bio.ed.ac.uk/Tracer. 2022-08-10. |
[28] | Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. |
[29] | Smedmark JEE (2006). Recircumscription of Geum (Colurieae: Rosaceae). Bot Jahrb Syst 126, 409-417. |
[30] | Smedmark JEE, Eriksson T (2002). Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst Bot 27, 303-317. |
[31] | Stamatakis A (2006). RAxML-VI-HPC: maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. |
[32] | Sun X, Wang YP, Liu C, Huang LF (2019). Molecular identification of Taihangia rupestris Yu et Li, an endangered species endemic to China. South Afr J Bot 124, 173-177. |
[33] | Tang M (2004). Conservation Biology of a Rare Herb Taihangia rupestris ( Rosaceae). PhD dissertation. Beijing: Graduate School of the Chinese Academy of Sciences (Institute of Botany). pp.1-127. (in Chinese) |
唐敏 (2004). 稀有植物太行花的保护生物学研究. 博士论文. 北京: 中国科学院研究生院(植物研究所). pp. 1-127. | |
[34] | Tang M, Yu FH, Jin XB, Ge S (2010). High genetic diversity in the naturally rare plant Taihangia rupestris Yu et Li (Rosaceae) dwelling only cliff faces. Pol J Ecol 58, 241- 248. |
[35] | Tang WB (2005). A floristic analysis of the seed plants in the middle-south area of east slope of Taihang Mountains. Bull Bot Res 25, 366-372. (in Chinese) |
唐伟斌 (2005). 太行山脉东坡中南段种子植物区系初步分析. 植物研究 25, 366-372. | |
[36] | Vozárová R, Herklotz V, Kovařík A, Tynkevich YO, Volkov RA, Ritz CM, Lunerová J (2021). Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the canina-type meiosis. Front Plant Sci 12, 643548. |
[37] | Wang HW, Cheng YQ, Fang XM, Ye YZ, Zong YY, Cao RZ (2011). Genetic diversity and differentiation in rare herb species Taihangia rupestris (Rosaceae). Acta Bot Boreal-Occident Sin 31, 45-51. (in Chinese) |
王红卫, 程月琴, 方向民, 叶永忠, 宗盈盈, 曹荣哲 (2011). 珍稀植物太行花的遗传多态性及其分化. 西北植物学报 31, 45-51. | |
[38] | Wang HW, Fang XM, Ye YZ, Cheng YQ, Wang ZS (2011). High genetic diversity in Taihangia rupestris Yu et Li, a rare cliff herb endemic to China, based on inter-simple sequence repeat markers. Biochem Syst Ecol 39, 553-561. |
[39] | Wang JS (2008). Research review Taihangia rupestris as a wild ornamental. J Anhui Agric Sci 36, 6209-6210. (in Chinese) |
王建书 (2008). 野生珍稀观赏植物太行花的研究. 安徽农业科学 36, 6209-6210. | |
[40] | Wang YL, Yan GQ (2014). Molecular phylogeography and population genetic structure of O. longilobus and O. taihangensis (Opisthopappus) on the Taihang Mountains. PLoS One 9, e104773. |
[41] | Wu C, Zhang XQ, Ma YH (1999). The Taihang and Yan Mountains rose mainly in Quarteranary. North China Earthq Sci 17, 1-7. (in Chinese) |
吴忱, 张秀清, 马永红 (1999). 太行山、燕山主要隆起于第四纪. 华北地震科学 17, 1-7. | |
[42] | Xu GF, Li XW, Meng L, Wang HS (2006). Resources of main varieties of wild herbal flower of Taihang mountain regions in Henan. J Anhui Agri Sci 34, 2380-2381, 2507. (in Chinese) |
许桂芳, 李孝伟, 孟丽, 王鸿升 (2006). 河南太行山区主要野生草本花卉资源. 安徽农业科学 34, 2380-2381, 2507. | |
[43] | Xue C, Geng FD, Li JJ, Zhang DQ, Gao F, Huang L, Zhang XH, Kang JQ, Zhang JQ, Ren Y (2021). Divergence in the Aquilegia ecalcarata complex is correlated with geography and climate oscillations: evidence from plastid genome data. Mol Ecol 30, 5796-5813. |
[44] | Yao G, Zhang YQ, Barrett C, Xue BE, Bellot S, Baker WJ, Ge XJ (2023). A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol 21, 50. |
[45] | Ye H, Wang Z, Hou HM, Wu JH, Gao Y, Han W, Ru WM, Sun GL, Wang YL (2021). Localized environmental heterogeneity drives the population differentiation of two endangered and endemic Opisthopappus Shih species. BMC Ecol Evol 21, 56. |
[46] | Ye XY, Ma PF, Yang GQ, Guo C, Zhang YX, Chen YM, Guo ZH, Li DZ (2019). Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Moun- tains. J Biogeogr 46, 2678-2689. |
[47] | Yü TT, Li CL (1980). Taihangia Yu et Li—a new genus of Rosaceae from China. J Univ Chin Acad Sci 18, 469-472. (in Chinese) |
俞德浚, 李朝銮 (1980). 太行花属——蔷薇科一新属. 中国科学院大学学报 18, 469-472. | |
[48] | Yü TT, Li CL (1983). The systematic position of genus Taihangia in Rosaceae. J Univ Chin Acad Sci 21, 229-235. (in Chinese) |
俞德浚, 李朝銮 (1983). 蔷薇科太行花属系统位置的研究. 中国科学院大学学报 21, 229-235. | |
[49] | Yu XQ, Maki M, Drew BT, Paton AJ, Li HW, Zhao JL, Conran JG, Li J (2014). Phylogeny and historical biogeography of Isodon (Lamiaceae): rapid radiation in south- west China and Miocene overland dispersal into Africa. Mol Phylogenet Evol 77, 183-194. |
[50] | Zhang JQ, Meng SY, Allen GA, Wen J, Rao GY (2014). Rapid radiation and dispersalout of the Qinghai-Tibetan plateau of an alpine plant lineage Rhodiola (Crassulaceae). Mol Phylogenet Evol 77, 147-158. |
[51] | Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS (2017). Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214, 1355-1367. |
[52] | Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, Celep F, Bräuchler C, Bendiksby M, Wang Q, Min DZ, Peng H, Olmstead RG, Li B, Xiang CL (2021). An updated tribal classification of lamiaceae based on plastome phylogenomics. BMC Biol 19, 2. |
[53] | Zhao Q, Liu HX, Luo LG, Ji X (2011). Comparative population genetics and phylogeography of two lacertid lizards (Eremias argus and E. brenchleyi) from China. Mol Phylogenet Evol 58, 478-491. |
[54] | Zhao X, Gao CW (2020). The complete chloroplast genome sequence of Rosa minutifolia. Mitochondrial DNA Part B 5, 3320-3321. |
[55] | Zhou Z, Hong DY, Niu Y, Li GD, Nie ZL, Wen J, Sun H (2013). Phylogenetic and biogeographic analyses of the sino-Himalayan endemic genus Cyananthus (Campanulaceae) and implications for the evolution of its sexual system. Mol Phylogenet Evol 68, 482-497. |
[1] | 王一晴, 马子驭, 王刚, 刘炎林, 宋大昭, 刘蓓蓓, 李露, 范新国, 黄巧雯, 李晟. 太行山华北豹袭击家畜的时空特点与管理建议: 以山西省和顺县为例[J]. 生物多样性, 2022, 30(9): 21510-. |
[2] | 陈旸康, 王益, 李家亮, 王文韬, 冯端宇, 毛康珊. 主流分子钟定年方法的原理、误差来源和使用建议[J]. 生物多样性, 2021, 29(5): 629-646. |
[3] | 卜向丽, 王静, 吴佳忆, 孙太福, 向荣伟, 鲁庆斌, 郝映红, 崔绍朋, 盛岩, 孟秀祥. 太行山东北部哺乳动物区系及多样性[J]. 生物多样性, 2021, 29(3): 331-339. |
[4] | 梁栋栋, 彭杰, 高改利, 洪欣, 周守标, 储俊, 王智. 鹞落坪落叶阔叶林蔷薇科主要树种的空间分布格局及种间关联性[J]. 生物多样性, 2020, 28(8): 1008-1017. |
[5] | 黄久香,陈文娜,李玉玲,姚纲. 基于多个叶绿体基因序列片段重建广义苋科系统发育关系[J]. 植物学报, 2020, 55(4): 457-467. |
[6] | 李晶, 周天阳, 鲁雪丽, 李新涛, 孙斌, 孟红杰. 珍稀植物连香树在其中国分布区北缘的种子性状及幼苗更新限制[J]. 生物多样性, 2020, 28(10): 1161-1173. |
[7] | 邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43(1): 1-15. |
[8] | 彭丹晓, 鲁丽敏, 陈之端. 区域生命之树及其在植物区系研究中的应用[J]. 生物多样性, 2017, 25(2): 156-162. |
[9] | 胡丰林 陆瑞利. 蔷薇科一些植物鲜叶提取物清除DPPH自由基活性的研究[J]. 植物学报, 2004, 21(01): 74-78. |
[10] | 田玉梅, 张义科, 张洪达, 张翠君. 太行山草地建群种远东羊茅地上生物量动态的研究[J]. 植物生态学报, 1993, 17(1): 61-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||