植物学报 ›› 2024, Vol. 59 ›› Issue (5): 752-762.DOI: 10.11983/CBB24008 cstr: 32102.14.CBB24008
罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华*()
收稿日期:
2024-01-15
接受日期:
2024-07-14
出版日期:
2024-09-10
发布日期:
2024-08-19
通讯作者:
李振华
基金资助:
Luo Yan, Liu Qiyuan, Lü Yuanbing, Wu Yue, Tian Yaoyu, An Tian, Li Zhenhua*()
Received:
2024-01-15
Accepted:
2024-07-14
Online:
2024-09-10
Published:
2024-08-19
Contact:
Li Zhenhua
摘要: 为阐明光敏色素家族基因突变对拟南芥(Arabidopsis thaliana)种子萌发时环境适应性的影响, 以野生型(Col-0)种子为对照, 对比了phyA、phyB、phyC、phyD和phyE单突变体种子在12种光温环境下萌发率的差异。结果表明, phyA突变体种子适应在红光下萌发, 而不适应在远红光和高温(35°C)下萌发。phyB突变体种子适应在白光和远红光背景下的低温(15°C)和适温(25°C)下萌发; 而不适应在高温(35°C)下萌发。phyC突变体种子适应在除白光35°C以外的11种光温环境下萌发。phyD或phyE突变体种子适应在低温(15°C)和适温(25°C)下萌发, 而不适应在高温(35°C)下萌发; 适应在红光和白光下萌发, 而不适应在黑暗和远红光下萌发。5个成员中, phyB、phyC和phyD的突变体种子可能丧失光温整合能力, 而phyA和phyE的突变体种子未丧失光温整合能力。综上, 光敏色素家族基因突变导致种子萌发对光、温和光×温的适应性改变, 通过靶向修饰光敏色素家族基因可提升种子萌发对不同生态环境的适应性。
中图分类号:
罗燕, 刘奇源, 吕元兵, 吴越, 田耀宇, 安田, 李振华. 拟南芥光敏色素突变体种子萌发的光温敏感性. 植物学报, 2024, 59(5): 752-762.
Luo Yan, Liu Qiyuan, Lü Yuanbing, Wu Yue, Tian Yaoyu, An Tian, Li Zhenhua. Photothermal Sensitivity of Phytochrome Mutants During Seed Germination in Arabidopsis thaliana. Chinese Bulletin of Botany, 2024, 59(5): 752-762.
图1 基因型、光质、温度及其互作对拟南芥种子萌发的影响 NS表示无显著差异; *、***和****分别表示在0.05、0.001和0.0001水平上差异显著。不同小写字母表示各处理间差异显著(P<0.05)。
Figure 1 Effects of genotype, light, temperature and their interactions on seed germination in Arabidopsis thaliana NS indicates no significant difference; *, *** and **** indicate significant differences at 0.05, 0.001, and 0.0001 level, respectively. Different lowercase letters indicate significant differences among the treatments (P<0.05).
Source | I | J | Mean difference (I-J) | P-value | Standard deviation |
---|---|---|---|---|---|
Genotype | Col-0 | phyA | -4.12 | 0.069 | 30.15 |
phyB | -2.87 | 0.104 | 24.32 | ||
phyC | -16.98 | 0.000*** | 30.61 | ||
phyD | -10.42 | 0.000*** | 28.95 | ||
phyE | -9.28 | 0.000*** | 31.18 | ||
phyA | phyB | 1.25 | 0.682 | 27.13 | |
phyC | -12.86 | 0.000*** | 32.44 | ||
phyD | -6.3 | 0.01** | 31.10 | ||
phyE | -5.16 | 0.03* | 33.22 | ||
phyB | phyC | -14.11 | 0.000*** | 27.29 | |
phyD | -7.55 | 0.000*** | 25.60 | ||
phyE | -6.41 | 0.046* | 28.13 | ||
phyC | phyD | 6.56 | 0.000*** | 30.46 | |
phyE | 7.69 | 0.000*** | 32.73 | ||
phyD | phyE | 1.14 | 0.060 | 31.67 | |
Temperature | 15°C | 25°C | 8.75 | 0.000*** | 29.72 |
35°C | 55.76 | 0.000*** | 29.99 | ||
25°C | 35°C | 47.01 | 0.000*** | 29.21 | |
Light | Darkness | White light | -8.89 | 0.000*** | 29.79 |
Red light | -12.55 | 0.000*** | 29.99 | ||
Far-red light | 16.13 | 0.230 | 30.11 | ||
White light | Red light | -3.66 | 0.272 | 30.18 | |
Far-red light | 25.02 | 0.034* | 29.67 | ||
Red light | Far-red light | 28.68 | 0.000*** | 28.79 |
表1 基因型、光照和温度处理均值的组内差值比较
Table 1 Comparisons of mean difference within the genotype, light, and temperature treatment
Source | I | J | Mean difference (I-J) | P-value | Standard deviation |
---|---|---|---|---|---|
Genotype | Col-0 | phyA | -4.12 | 0.069 | 30.15 |
phyB | -2.87 | 0.104 | 24.32 | ||
phyC | -16.98 | 0.000*** | 30.61 | ||
phyD | -10.42 | 0.000*** | 28.95 | ||
phyE | -9.28 | 0.000*** | 31.18 | ||
phyA | phyB | 1.25 | 0.682 | 27.13 | |
phyC | -12.86 | 0.000*** | 32.44 | ||
phyD | -6.3 | 0.01** | 31.10 | ||
phyE | -5.16 | 0.03* | 33.22 | ||
phyB | phyC | -14.11 | 0.000*** | 27.29 | |
phyD | -7.55 | 0.000*** | 25.60 | ||
phyE | -6.41 | 0.046* | 28.13 | ||
phyC | phyD | 6.56 | 0.000*** | 30.46 | |
phyE | 7.69 | 0.000*** | 32.73 | ||
phyD | phyE | 1.14 | 0.060 | 31.67 | |
Temperature | 15°C | 25°C | 8.75 | 0.000*** | 29.72 |
35°C | 55.76 | 0.000*** | 29.99 | ||
25°C | 35°C | 47.01 | 0.000*** | 29.21 | |
Light | Darkness | White light | -8.89 | 0.000*** | 29.79 |
Red light | -12.55 | 0.000*** | 29.99 | ||
Far-red light | 16.13 | 0.230 | 30.11 | ||
White light | Red light | -3.66 | 0.272 | 30.18 | |
Far-red light | 25.02 | 0.034* | 29.67 | ||
Red light | Far-red light | 28.68 | 0.000*** | 28.79 |
Germination ratio among different genotype (G) | Environmental combinations of light and temperature |
---|---|
Significantly higher than wild type | phyA: WT15, WT25, WT35, RT25, and RT35 phyB: DT35, WT35, FRT15, FRT25, and FRT35 phyC: WT15, WT25, DT15, DT25, DT35, RT15, RT25, RT35, FRT15, FRT25, and FRT35 phyD: WT15, WT25, DT15, DT25, DT35, RT25, FRT25, and FRT35 phyE: WT25, RT15, RT25, and FRT25 |
Significantly lower than wild type | phyA: FRT15, and FRT35 phyB: WT15, and DT15 phyE: FRT35 |
No significant difference | phyA: DT15, DT25, DT35, RT15, and FRT25 phyB: WT25, DT25, RT15, RT25, and RT35 phyC: WT35 phyD: WT35, RT15, RT35, and FRT15 phyE: DT15, DT25, DT35, WT15, WT35, RT35, and FRT15 |
Maximum | phyA: WT15, RT15, WT25, and RT25 phyB: DT15, WT15, RT15, and WT25 phyC: WT15, RT15, WT25, and RT25 phyD: DT15, WT15, RT15, and WT25 phyE: WT15, RT15, WT25, and RT25 Col-0: DT15, WT15, RT15, and WT25 |
Minimum | phyA: FRT25, FRT35, DT35, and WT35 phyB: DT35, WT35, RT35, and FRT35 phyC: DT35, WT35, RT35, and FRT35 phyD: DT35, WT35, RT35, and FRT35 phyE: DT35, WT35, RT35, and FRT35 Col-0: DT35, WT35, RT35, and FRT35 |
表2 phys响应光照和温度信号调控种子萌发
Table 2 phys regulates seed germination in response to signals of light and temperature
Germination ratio among different genotype (G) | Environmental combinations of light and temperature |
---|---|
Significantly higher than wild type | phyA: WT15, WT25, WT35, RT25, and RT35 phyB: DT35, WT35, FRT15, FRT25, and FRT35 phyC: WT15, WT25, DT15, DT25, DT35, RT15, RT25, RT35, FRT15, FRT25, and FRT35 phyD: WT15, WT25, DT15, DT25, DT35, RT25, FRT25, and FRT35 phyE: WT25, RT15, RT25, and FRT25 |
Significantly lower than wild type | phyA: FRT15, and FRT35 phyB: WT15, and DT15 phyE: FRT35 |
No significant difference | phyA: DT15, DT25, DT35, RT15, and FRT25 phyB: WT25, DT25, RT15, RT25, and RT35 phyC: WT35 phyD: WT35, RT15, RT35, and FRT15 phyE: DT15, DT25, DT35, WT15, WT35, RT35, and FRT15 |
Maximum | phyA: WT15, RT15, WT25, and RT25 phyB: DT15, WT15, RT15, and WT25 phyC: WT15, RT15, WT25, and RT25 phyD: DT15, WT15, RT15, and WT25 phyE: WT15, RT15, WT25, and RT25 Col-0: DT15, WT15, RT15, and WT25 |
Minimum | phyA: FRT25, FRT35, DT35, and WT35 phyB: DT35, WT35, RT35, and FRT35 phyC: DT35, WT35, RT35, and FRT35 phyD: DT35, WT35, RT35, and FRT35 phyE: DT35, WT35, RT35, and FRT35 Col-0: DT35, WT35, RT35, and FRT35 |
Source | III class sum of squares | Degrees of freedom | Mean square | F | Significance | |
---|---|---|---|---|---|---|
phyA | Light | 15567 | 3 | 5189 | 209.187 | 0.000*** |
Temperature | 38280.25 | 2 | 19140.125 | 771.606 | 0.000*** | |
Genotype | 304.222 | 1 | 304.222 | 12.264 | 0.001*** | |
Light × temperature | 7754.083 | 6 | 1292.347 | 52.099 | 0.000*** | |
Genotype × light | 1510.111 | 3 | 503.37 | 20.293 | 0.000*** | |
Genotype × temperature | 285.194 | 2 | 142.597 | 5.749 | 0.006** | |
Light × temperature × genotype | 598.472 | 6 | 99.745 | 4.021 | 0.002** | |
phyB | Light | 4195.819 | 3 | 1398.606 | 65.051 | 0.000*** |
Temperature | 32368.583 | 2 | 16184.292 | 752.758 | 0.000*** | |
Genotype | 147.347 | 1 | 147.347 | 6.853 | 0.012* | |
Light × temperature | 3413.972 | 6 | 568.995 | 26.465 | 0.000*** | |
Genotype × light | 670.597 | 3 | 223.532 | 10.397 | 0.000*** | |
Genotype × temperature | 524.694 | 2 | 262.347 | 12.202 | 0.000*** | |
Light × temperature × genotype | 239.861 | 6 | 39.977 | 1.859 | 0.107 | |
phyC | Light | 6708.819 | 3 | 2236.273 | 118.217 | 0.000*** |
Temperature | 48960.194 | 2 | 24480.097 | 1294.102 | 0.000*** | |
Genotype | 5185.014 | 1 | 5185.014 | 274.098 | 0.000*** | |
Light × temperature | 3795.139 | 6 | 632.523 | 33.437 | 0.000*** | |
Genotype × light | 1587.028 | 2 | 793.514 | 41.948 | 0.000*** | |
Genotype × temperature | 67.819 | 3 | 22.606 | 1.195 | 0.322 | |
Light × temperature × genotype | 259.639 | 6 | 43.273 | 2.288 | 0.051 | |
phyD | Light | 8161.597 | 3 | 2720.532 | 138.137 | 0.000*** |
Temperature | 42934.194 | 2 | 21467.097 | 1090.008 | 0.000*** | |
Genotype | 1953.125 | 1 | 1953.125 | 99.171 | 0.000*** | |
Light × temperature | 5383.361 | 6 | 897.227 | 45.557 | 0.000*** | |
Genotype × light | 181.708 | 3 | 60.569 | 3.075 | 0.036* | |
Genotype × temperature | 715.75 | 2 | 357.875 | 18.171 | 0.000*** | |
Light × temperature × genotype | 80.25 | 6 | 13.375 | 0.679 | 0.667 | |
phyE | Light | 10177.944 | 3 | 3392.648 | 183.662 | 0.000*** |
Temperature | 47446.583 | 2 | 23723.292 | 1284.268 | 0.000*** | |
Genotype | 1549.389 | 1 | 1549.389 | 83.877 | 0.000*** | |
Light × temperature | 5985.306 | 6 | 997.551 | 54.003 | 0.000*** | |
Genotype × light | 528.611 | 3 | 176.204 | 9.539 | 0.000*** | |
Genotype × temperature | 3100.861 | 2 | 1550.431 | 83.933 | 0.000*** | |
Light × temperature × genotype | 334.139 | 6 | 55.69 | 3.015 | 0.014* |
表3 基因型、光照和温度对拟南芥种子萌发率影响的多因素方差分析
Table 3 Multi-factor variance analysis of the interactions among genotype, light, and temperature in the regulation of seed germination in Arabidopsis
Source | III class sum of squares | Degrees of freedom | Mean square | F | Significance | |
---|---|---|---|---|---|---|
phyA | Light | 15567 | 3 | 5189 | 209.187 | 0.000*** |
Temperature | 38280.25 | 2 | 19140.125 | 771.606 | 0.000*** | |
Genotype | 304.222 | 1 | 304.222 | 12.264 | 0.001*** | |
Light × temperature | 7754.083 | 6 | 1292.347 | 52.099 | 0.000*** | |
Genotype × light | 1510.111 | 3 | 503.37 | 20.293 | 0.000*** | |
Genotype × temperature | 285.194 | 2 | 142.597 | 5.749 | 0.006** | |
Light × temperature × genotype | 598.472 | 6 | 99.745 | 4.021 | 0.002** | |
phyB | Light | 4195.819 | 3 | 1398.606 | 65.051 | 0.000*** |
Temperature | 32368.583 | 2 | 16184.292 | 752.758 | 0.000*** | |
Genotype | 147.347 | 1 | 147.347 | 6.853 | 0.012* | |
Light × temperature | 3413.972 | 6 | 568.995 | 26.465 | 0.000*** | |
Genotype × light | 670.597 | 3 | 223.532 | 10.397 | 0.000*** | |
Genotype × temperature | 524.694 | 2 | 262.347 | 12.202 | 0.000*** | |
Light × temperature × genotype | 239.861 | 6 | 39.977 | 1.859 | 0.107 | |
phyC | Light | 6708.819 | 3 | 2236.273 | 118.217 | 0.000*** |
Temperature | 48960.194 | 2 | 24480.097 | 1294.102 | 0.000*** | |
Genotype | 5185.014 | 1 | 5185.014 | 274.098 | 0.000*** | |
Light × temperature | 3795.139 | 6 | 632.523 | 33.437 | 0.000*** | |
Genotype × light | 1587.028 | 2 | 793.514 | 41.948 | 0.000*** | |
Genotype × temperature | 67.819 | 3 | 22.606 | 1.195 | 0.322 | |
Light × temperature × genotype | 259.639 | 6 | 43.273 | 2.288 | 0.051 | |
phyD | Light | 8161.597 | 3 | 2720.532 | 138.137 | 0.000*** |
Temperature | 42934.194 | 2 | 21467.097 | 1090.008 | 0.000*** | |
Genotype | 1953.125 | 1 | 1953.125 | 99.171 | 0.000*** | |
Light × temperature | 5383.361 | 6 | 897.227 | 45.557 | 0.000*** | |
Genotype × light | 181.708 | 3 | 60.569 | 3.075 | 0.036* | |
Genotype × temperature | 715.75 | 2 | 357.875 | 18.171 | 0.000*** | |
Light × temperature × genotype | 80.25 | 6 | 13.375 | 0.679 | 0.667 | |
phyE | Light | 10177.944 | 3 | 3392.648 | 183.662 | 0.000*** |
Temperature | 47446.583 | 2 | 23723.292 | 1284.268 | 0.000*** | |
Genotype | 1549.389 | 1 | 1549.389 | 83.877 | 0.000*** | |
Light × temperature | 5985.306 | 6 | 997.551 | 54.003 | 0.000*** | |
Genotype × light | 528.611 | 3 | 176.204 | 9.539 | 0.000*** | |
Genotype × temperature | 3100.861 | 2 | 1550.431 | 83.933 | 0.000*** | |
Light × temperature × genotype | 334.139 | 6 | 55.69 | 3.015 | 0.014* |
[1] | Alba R, Kelmenson PM, Cordonnier-Pratt MM, Pratt LH (2000). The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol Biol Evol 17, 362-373. |
[2] | Arana MV, Sánchez-Lamas M, Strasser B, Ibarra SE, Cerdán PD, Botto JF, Sánchez RA (2014). Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ 37, 2014-2023. |
[3] | Arana MV, Tognacca RS, Estravis-Barcalá M, Sánchez RA, Botto JF (2017). Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds. Plant Cell Environ 40, 3113-3121. |
[4] | Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952). A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38, 662-666. |
[5] | Cai SY, Liu JX, Wang GF, Wu LY, Song JP (2023). Regulatory mechanism of melatonin on tomato seed germination under Cd2+ stress. Chin Bull Bot 58, 720-732. (in Chinese) |
蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平 (2023). 褪黑素促进镉胁迫下番茄种子萌发的调控机理. 植物学报 58, 720-732. | |
[6] | Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64, 403-427. |
[7] | Chen D, Lyu M, Kou XX, Li J, Yang ZX, Gao LL, Li Y, Fan LM, Shi H, Zhong SW (2022). Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell 82, 3015-3029. |
[8] | Dechaine JM, Gardner G, Weinig C (2009). Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ 32, 1297-1309. |
[9] | Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination. New Phytol 171, 501-523. |
[10] | Footitt S, Huang ZY, Clay HA, Mead A, Finch-Savage WE (2013). Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J 74, 1003-1015. |
[11] | Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003). Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131, 1340-1346. |
[12] | Halliday KJ, Davis SJ (2016). Light-sensing phytochromes feel the heat. Science 354, 832-833. |
[13] | Hennig L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E (2002). Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128, 194-200. |
[14] | Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007). A new role for phytochromes in temperature-dependent germination. New Phytol 174, 735- 741. |
[15] | Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C (2015). Systematic analysis of how phytochrome B dimerization determines its specificity. Nat Plants 1, 15090. |
[16] | Li ZH, Wang XY, Liu YL, Zhao JH (2022). NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. Acta Agron Sin 48, 99-107. (in Chinese) |
李振华, 王显亚, 刘一灵, 赵杰宏 (2022). NtPHYB1与光温信号互作调控烟草种子萌发. 作物学报 48, 99-107. | |
[17] | Piskurewicz U, Turečková V, Lacombe E, Lopez-Molina L (2009). Far-red light inhibits germination through DELLA- dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28, 2259-2271. |
[18] | Qian WJ, Zhu YX, Chen QS, Wang SY, Chen LL, Liu T, Tang HR, Yao HY (2023). Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis. Front Plant Sci 14, 1132881. |
[19] | Saini HS, Consolacion ED, Bassi PK, Spencer MS (1989). Control processes in the induction and relief of thermoinhibition of lettuce seed germination: actions of phytochrome and endogenous ethylene. Plant Physiol 90, 311- 315. |
[20] | Sharrock RA, Clack T, Goosey L (2003). Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes. Plant Mol Biol 52, 135-142. |
[21] | Shinomura T, Nagatani A, Chory J, Furuya M (1994). The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104, 363-371. |
[22] | Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996). Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93, 8129-8133. |
[23] | Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD (2010). Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA 107, 4776-4781. |
[24] | Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He ZS, Li Y, Harvey D, Larson TR, Graham IA (2018). MOTHER- OF-FT-AND-TFL1represses seed germination under far- red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 115, 8442- 8447. |
[25] | Viczián A, Klose C, Hiltbrunner A, Nagy F (2021). Editorial: plant phytochromes: from structure to signaling and beyond. Front Plant Sci 12, 811379. |
[26] | Wang SH, Huang CJ (2008). Effect of low temperature on tobacco seed germination. China Seed Ind (5), 48-49. (in Chinese) |
王树会, 黄成江 (2008). 低温对烟草种子萌发的影响. 中国种业 (5), 48-49. | |
[27] | Wang SH, Zhao GK, Yang ZQ, Zhang HY (2009). The impact of extreme temperature on seed germination of tobacco. China Seed Ind (9), 52-53. (in Chinese) |
王树会, 赵高坤, 杨志强, 张红艳 (2009). 极端高温对烟草种子萌发的影响. 中国种业 (9), 52-53. | |
[28] | Wang YF, He HX, Zhang MS, Peng SW, Xu L, Yang XR, Zhai X (2009). Effects of light, temperature and salt stress on seed germination of Hongda (a tobacco variety). Seed 28(12), 19-22. (in Chinese) |
王玉芳, 贺化祥, 张明生, 彭斯文, 徐利, 杨小蕊, 翟欣 (2009). 光照、温度和盐胁迫对红花大金元种子萌发的影响. 种子 28(12), 19-22. | |
[29] | Wei SW, Yang X, Huo GT, Ge GJ, Liu HY, Luo LJ, Hu JG, Huang DF, Long P (2020). Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int J Mol Sci 21, 1481. |
[30] | Wilson RL, Kim H, Bakshi A, Binder BM (2014). The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165, 1353-1366. |
[31] | Yang LW, Liu SR, Lin RC (2019). Advances in light and hormones in regulating seed dormancy and germination. Chin Bull Bot 54, 569-581. (in Chinese) |
杨立文, 刘双荣, 林荣呈 (2019). 光信号与激素调控种子休眠和萌发研究进展. 植物学报 54, 569-581. | |
[32] | Zhang HB, Liu P, Liu LH, Lan HY, Zhang FC (2007). Seed germination characteristics and ecological adaptability of Arabidopsis pumila, a Xinjiang-originated ephemeral plant species. Acta Ecol Sin 27, 4310-4316. (in Chinese) |
张海波, 刘彭, 刘立鸿, 兰海燕, 张富春 (2007). 新疆短命植物小拟南芥(Arabidopsis pumila)种子萌发特性及其生态适应性. 生态学报 27, 4310-4316. | |
[33] | Zhao QB, Song P, Wang GZ, Lü B, Cao XZ (2001). Effect of light, temperature and phytohormone on seed germination and seedling growth of Nicotiana tabacum. Acta Tabacaria Sin 4, 29-32. (in Chinese) |
招启柏, 宋平, 王广志, 吕冰, 曹显祖 (2001). 光、温、激素对烟草种子萌发和幼苗生长的影响. 中国烟草学报 4, 29-32. | |
[34] | Zhao XT, Mao KT, Xu JH, Zheng C, Luo XF, Shu K (2021). Protein phosphorylation and its regulatory roles in seed dormancy and germination. Chin Bull Bot 56, 488-499. (in Chinese) |
赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯 (2021). 蛋白质磷酸化修饰与种子休眠及萌发调控. 植物学报 56, 488-499. |
[1] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[2] | 孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 770-779. |
[3] | 景艳军 林荣呈. 蓝光受体CRY2化身“暗黑舞者”[J]. 植物学报, 2024, 59(6): 878-882. |
[4] | 袁涵, 钟爱文, 刘送平, 彭焱松, 徐磊. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[5] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[6] | 谢启光, 徐小冬. 植物生物钟在农业生产中应对全球变暖的应用[J]. 植物学报, 2024, 59(4): 635-650. |
[7] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[8] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[9] | 朱晓博, 董张, 祝梦瑾, 胡晋, 林程, 陈敏, 关亚静. 重要的种子储存物质长寿命mRNA[J]. 植物学报, 2024, 59(3): 355-372. |
[10] | 顾家琦, 朱福慧, 谢沛豪, 孟庆营, 郑颖, 张献龙, 袁道军. 棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析[J]. 植物学报, 2024, 59(1): 34-53. |
[11] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[12] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[13] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[14] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[15] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||