植物学报 ›› 2019, Vol. 54 ›› Issue (2): 277-283.DOI: 10.11983/CBB18197
所属专题: 逆境生物学专辑 (2019年54卷2期)
• 专题论坛 • 上一篇
叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛(),饶玉春(
)
收稿日期:
2018-09-17
接受日期:
2018-12-10
出版日期:
2019-03-01
发布日期:
2019-09-01
通讯作者:
方媛,饶玉春
基金资助:
Wenlan Ye,Guolan Ma,liyanan Yuan,Shiyi Zheng,Linqiao Cheng,Yuan Fang(),Yuchun Rao(
)
Received:
2018-09-17
Accepted:
2018-12-10
Online:
2019-03-01
Published:
2019-09-01
Contact:
Yuan Fang,Yuchun Rao
摘要: 水稻(Oryza sativa)细菌性穗枯病是世界性的重要病害之一, 严重威胁全球范围水稻的高产稳产。虽然该病目前仍被列为我国的检疫性病害, 但近几年的研究表明, 穗枯病随时有在内地蔓延的潜在危险, 因此除了加强检疫工作, 开展针对性的防控技术研发也十分必要。水稻细菌性穗枯病菌在侵染过程中涉及多种毒力因子, 同时, 水稻在与病原菌的长期互作过程中演化出了多种防卫机制, 抗性基因是主要的防卫机制之一。挖掘水稻基因组中抗细菌性穗枯病遗传位点并培育抗病品种是最安全且经济有效的防治途径。该文综述了水稻细菌性穗枯病的病原菌特性、发病特征、发病机制、病害循环和对水稻细菌性穗枯病的抗性研究现状, 以期为挖掘和分离水稻穗枯病抗性位点提供参考。
叶雯澜,马国兰,袁李亚男,郑士仪,程琳乔,方媛,饶玉春. 水稻细菌性穗枯病的病原特性和抗性研究进展. 植物学报, 2019, 54(2): 277-283.
Wenlan Ye,Guolan Ma,liyanan Yuan,Shiyi Zheng,Linqiao Cheng,Yuan Fang,Yuchun Rao. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice. Chinese Bulletin of Botany, 2019, 54(2): 277-283.
[1] | 李春宏, 付三雄, 戚存扣 ( 2014). 应用基因芯片分析甘蓝型油菜柱头特异表达基因. 植物学报 49, 246-253. |
[2] | 李路, 刘连盟, 王国荣, 汪爱娟, 王玲, 孙磊, 黎起秦, 黄世文 ( 2015). 水稻穗腐病和穗枯病的研究进展. 中国水稻科学 29, 215-222. |
[3] | 李路, 徐以华, 梁梦琦, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文 ( 2017). 水稻对穗枯病的抗病机理初步研究. 中国水稻科学 31, 551-558. |
[4] | 龙海, 李芳荣, 冯建军, 李一农 ( 2015). 水稻细菌性谷枯病研究进展. 中国植保导刊 35(7), 73-78. |
[5] | 罗金燕 ( 2007). 水稻细菌性谷枯病菌的风险分析、鉴定检测及其拮抗细菌的研究. 博士论文. 杭州: 浙江大学. pp. 2-85. |
[6] | 罗金燕, 谢关林, 李斌 ( 2003). 水稻细菌性谷枯病的生物学特征及其检疫意义. 植物检疫 17, 243-245. |
[7] | 罗金燕, 徐福寿, 王平, 徐丽慧, 谢关林 ( 2008). 水稻细菌性谷枯病病原菌的分离鉴定. 中国水稻科学 22, 82-86. |
[8] | 谢关林, 罗金燕, 李斌 ( 2003). 水稻危险性病害——细菌性谷枯病及其病原鉴别. 植物保护 29(5), 47-49. |
[9] | 徐丽慧 ( 2008). 水稻细菌性谷枯病菌的分子检测及细菌性褐条病病原鉴定研究. 硕士论文. 杭州: 浙江大学. pp. 3. |
[10] | 朱金国, 莫瑾, 朱水芳, 赵文军, 彭梓, 刘红霞, 钟文英 ( 2010). 利用双重PCR-DHPLC技术检测水稻细菌性谷枯病菌的研究. 植物病理学报 40, 449-455. |
[11] | Boekema BKL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J ( 2007). Hexa- decane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73, 3838-3844. |
[12] | Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I ( 2009). The quorum sensing dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 191, 4152-4157. |
[13] | Cui ZQ, Zhu B, Xie GL, Li B, Huang SW ( 2016). Research status and prospect of Burkholderia glumae , the pathogen causing bacterial panicle blight. Rice Sci 23, 111-118. |
[14] |
Daniels R, Vanderleyden J, Michiels J ( 2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261-289.
DOI URL |
[15] |
Davey ME, O’Toole GA ( 2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol 64, 847-867.
DOI URL |
[16] | Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V ( 2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73, 4950-4958. |
[17] | Francis F, Kim J, Ramaraj T, Farmer A, Rush MC, Ham JH ( 2013). Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genomics 288, 195-203. |
[18] | Frenken LGJ, Bos JW, Visser C, Müller W, Tommassen J, Verrips CT ( 1993). An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 9, 579-589. |
[19] | Goto K, Ohata K ( 1956). New bacterial diseases of rice (brown stripe and grain rot). Ann Phytopathol Soc Jpn 21, 46-47. |
[20] | Ham JH, Melanson RA, Rush MC ( 2011). Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12, 329-339. |
[21] | Hikichi Y, Noda C, Shimizu K ( 1989). Oxolic acid. Jpn Pestic Infect 55, 21-23. |
[22] | Jang MS, Goo E, An JH, Kim J, Hwang I ( 2014). Quorum sensing controls flagellar morphogenesis in Burkholderia glumae . PLoS One 9, e84831. |
[23] | Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I ( 2003). Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87, 890-895. |
[24] |
Kang Y, Kim J, Kim S, Kim H, Lim JY, Kim M, Kwak J, Moon JS, Hwang I ( 2008). Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8, 106-121.
DOI URL |
[25] | Kawaradani M, Okada K, Kusakari S ( 2000). New selective medium for isolation of Burkholderia glumae from rice seeds. J Gen Plant Pathol 66, 234-237. |
[26] | Kim S, Park J, Kim JH, Lee J, Bang B, Hwang I, Seo YS ( 2013). RNAseq-based transcriptome analysis of Burk- holderia glumae quorum sensing. Plant Pathol J 29, 249-259. |
[27] | Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS ( 2014). Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 547, 77-85. |
[28] | Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I ( 2009). Complete genome sequence of Burkholderia glumae BGR1 . J Bacteriol 191, 3758-3759. |
[29] | Maeda Y, Kiba A, Ohnishi K, Hikichi Y ( 2004). New method to detect oxolinic acid-resistant Burkholderia glumae infesting rice seeds using a mismatch amplification mutation assay polymerase chain reaction. J Gen Plant Pathol 70, 215-217. |
[30] | Magbanua ZV, Arick M 2nd, Buza T, Hsu CY, Showmaker KC, Chouvarine P, Deng P, Peterson DG, Lu S ( 2014). Transcriptomic dissection of the rice- Burkholderia glumae interaction. BMC Genomics 15, 755. |
[31] | Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen RX, Shrestha BK, Ham JH ( 2017). Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae . Mi- crobiology 163, 266-279. |
[32] |
Mizobuchi R, Sato H, Fukuoka S, Tanabata T, Tsushima S, Imbe T, Yano M ( 2013a). Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 6, 13.
DOI |
[33] | Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Imbe T, Yano M ( 2013b). Identification of qRBS1 , a QTL involved in resistance to bacterial seedling rot in rice. Theor Appl Genet 126, 2417-2425. |
[34] | Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Yano M ( 2015). Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol Breed 35, 15. |
[35] | Nandakumar R, Rush MC ( 2008). Analysis of gene expression in Jupiter rice showing partial resistance to rice panicle blight caused by Burkholderia glumae . Phytopathology 98, 112. |
[36] | Nickzad A, Lépine F, Déziel E ( 2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One 10, e0128509. |
[37] |
Pinson SRM, Shahjahan AKM, Rush MC, Groth DE ( 2010). Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci 50, 1287-1297.
DOI URL |
[38] |
Sha X, Linscombe SD, Groth DE, Bond JA, White LM, Utomo HS, Dunand RT ( 2006). Registration of ‘Jupiter’ rice. Crop Sci 46, 1811-1812.
DOI URL |
[39] | Suzuki F, Sawada H, Azegami K, Tsuchiya K ( 2004). Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. J Gen Plant Pathol 70, 97-107. |
[40] | Trung HM, Van NV, Vien NV, Lam DT, Lien M ( 1993). Occurrence of rice grain rot disease in Vietnam. Int Rice Res Notes 18, 30. |
[41] | Tsushima S, Mogi S, Naito H, Saito H ( 1989). Existence of Pseudomonas glumae on the rice seeds and development of the simple method for detecting P. glumae from the rice seeds. Bull Kyushu Natl Agric Exp Stn 25, 261-270. |
[42] | Tsushima S, Wakimoto S, Mogi S ( 1986). Selective medium for detecting Pseudomonas glumae Kurita et Tabei, the causal bacterium of grain rot of rice. Jpn J Phytopathol 52, 253-259. |
[1] | 黄佳慧, 杨惠敏, 陈欣雨, 朱超宇, 江亚楠, 胡程翔, 连锦瑾, 芦涛, 路梅, 张维林, 饶玉春. 水稻突变体pe-1对弱光胁迫的响应机制[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[3] | 朱超宇, 胡程翔, 朱哲楠, 张芷宁, 汪理海, 陈钧, 李三峰, 连锦瑾, 唐璐瑶, 钟芊芊, 殷文晶, 王跃星, 饶玉春. 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024, 59(2): 217-230. |
[4] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[5] | 赵晗茜, 宋佳怡, 杨洁, 赵永晶, 夏文念, 顾伟卓, 汪仲毅, 杨楠, 胡慧贞. 金鱼草XTH家族基因鉴定及抗核盘菌和雄蕊瓣化相关基因筛选[J]. 植物学报, 2024, 59(2): 188-203. |
[6] | 朱宝, 赵江哲, 张可伟, 黄鹏. 水稻细胞分裂素氧化酶9参与调控水稻叶夹角发育[J]. 植物学报, 2024, 59(1): 10-21. |
[7] | 方妍力, 田传玉, 苏如意, 刘亚培, 王春连, 陈析丰, 郭威, 纪志远. 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024, 59(1): 1-9. |
[8] | 贾绮玮, 钟芊芊, 顾育嘉, 陆天麒, 李玮, 杨帅, 朱超宇, 胡程翔, 李三峰, 王跃星, 饶玉春. 水稻茎秆细胞壁相关组分含量QTL定位及候选基因分析[J]. 植物学报, 2023, 58(6): 882-892. |
[9] | 田传玉, 方妍力, 沈晴, 王宏杰, 陈析丰, 郭威, 赵开军, 王春连, 纪志远. 2019-2021年我国南方稻区白叶枯病菌的毒力与遗传多样性调查研究[J]. 植物学报, 2023, 58(5): 743-749. |
[10] | 戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5): 799-812. |
[11] | 刘裕强, 万建民. 寄主监控昆虫唾液蛋白平衡植物抗性与生长发育[J]. 植物学报, 2023, 58(3): 353-355. |
[12] | 孙尚, 胡颖颖, 韩阳朔, 薛超, 龚志云. 水稻染色体双链寡核苷酸荧光原位杂交技术[J]. 植物学报, 2023, 58(3): 433-439. |
[13] | 金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春. 水稻叶绿素含量QTL定位与候选基因表达分析[J]. 植物学报, 2023, 58(3): 394-403. |
[14] | 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用[J]. 植物学报, 2023, 58(3): 359-372. |
[15] | 王琪, 吴允哲, 刘学英, 孙丽莉, 廖红, 傅向东. 类受体激酶调控水稻生长发育和环境适应研究进展[J]. 植物学报, 2023, 58(2): 199-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||