植物学报 ›› 2025, Vol. 60 ›› Issue (5): 693-703.DOI: 10.11983/CBB25131  cstr: 32102.14.CBB25131

• 热点评述 • 上一篇    下一篇

植物免疫研究: 机制突破和应用创新

肖银燕,, 于华,, 万里*()   

  1. 中国科学院分子植物科学卓越创新中心, 上海 200032
  • 收稿日期:2025-07-23 接受日期:2025-09-02 出版日期:2025-09-10 发布日期:2025-09-02
  • 通讯作者: *万里, 中国科学院分子植物科学卓越创新中心研究员, 博士生导师, 入选国家青年千人计划, 获得上海市植物病理学会杰出青年科学家奖。万里课题组专注于植物免疫机制研究和广谱抗性农作物创制, 在植物细胞内免疫受体NLR工作的分子机理方面取得重要进展。相关成果以第一作者(含共同)发表在Science (2014, 2019), 以通讯作者(含共同)发表在Nature、Science、Proc Natl Acad Sci USA、Nature Plants、Science Advances和J Integr Plant Biol等学术期刊。E-mail: lwan@cemps.ac.cn
  • 作者简介:共同第一作者
  • 基金资助:
    国家自然科学基金面上项目(32270304)

Plant Immunity Study: Mechanism Breakthroughs and Application Innovations

Xiao Yinyan,, Yu Hua,, Wan Li*()   

  1. CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
  • Received:2025-07-23 Accepted:2025-09-02 Online:2025-09-10 Published:2025-09-02
  • Contact: *E-mail: lwan@cemps.ac.cn
  • About author:These authors contributed equally to this paper

摘要: 作为抵御病原入侵的核心防线, 植物天然免疫系统的受体识别与信号转导机制已建立较为完善的框架。该文对国内近期植物免疫领域取得的5项关键突破进行了阐述。(1) 发现了真菌染色体非均等分配及卵菌染色体融合驱动毒力进化的新规律; (2) 阐明了豆科植物中激酶MtLICK1/2通过磷酸化修饰MtLYK3精确调控“共生-免疫”转换的分子开关机制; (3) 明确了禾本科作物中串联激酶与NLR免疫受体以“sensor-executor”配对模式协同激活免疫的新范式; (4) 创新性提出“感受型与辅助型NLR共转移”策略以克服物种限制; (5) 开发出基于病原蛋白酶切割的自激活NLR嵌合体工程化改造技术, 赋予了植物广谱抗性。上述研究成果从病原适应性进化、宿主免疫精细调控及受体工程应用3个维度, 深化了对植物-病原-环境互作复杂网络的理解, 成功将基础机制认知转化为作物抗病遗传改良实践, 为设计培育具有持久、广谱抗性的作物新品种提供了坚实的理论基础与可操作的技术路径。

关键词: 植物免疫, 植物-微生物互作, 抗病蛋白, 抗病遗传改良

Abstract: The plant innate immune system serves as the primary defense against pathogen invasion, with well-established frameworks for receptor recognition and signal transduction mechanisms. This review highlights recent key breakthroughs in plant immunity research from Chinese institutions: (1) The discovery of novel mechanisms driving virulence evolution through asymmetric chromosome distribution in fungi and chromosome fusion in oomycetes; (2) Elucidation of the kinase MtLICK1/2-mediated molecular switch that precisely regulates the symbiosis-immunity trade-off via phosphorylation of MtLYK3 in legumes; (3) Identification of a “sensor-executor” paradigm where tandem kinases and NLR immune receptors cooperatively activate immunity in cereal crops; (4) Innovative strategies including co-transfer of sensor-helper NLR pairs to overcome taxonomic restrictions; and (5) Develop technology of autoactive NLR chimeras activated by pathogen protease cleavage for broad-spectrum resistance. These advances collectively deepen our understanding of plant-pathogen-environment interactions across three dimensions—pathogen adaptive evolution, sophisticated host immune regulation, and receptor engineering applications. Crucially, fundamental mechanistic insights have been successfully translated into crop genetic improvement practices. The integrated findings provide a robust theoretical foundation and actionable technological framework for designing novel crop varieties with durable, broad-spectrum disea- se resistance to address mounting agricultural biosecurity threats.

Key words: plant immunity, plant-microbe interactions, disease resistance proteins, genetic improvement for disease resistance