植物学报 ›› 2025, Vol. 60 ›› Issue (5): 1-0.DOI: 10.11983/CBB25131  cstr: 32102.14.CBB25131

• 热点评述 •    

植物免疫研究:机制突破和应用创新

肖银燕,于华,万里   

  1. 上海植生所
  • 收稿日期:2025-07-23 修回日期:2025-08-21 出版日期:2025-09-10 发布日期:2025-09-02
  • 通讯作者: 万里

Plant immunity study: mechanism breakthroughs and application innovations

银燕 肖1, 1   

  • Received:2025-07-23 Revised:2025-08-21 Online:2025-09-10 Published:2025-09-02

摘要: 植物天然免疫系统作为抵御病原入侵的核心防线,其受体识别与信号转导机制已建立较完善框架。本文聚焦国内近期在植物免疫领域取得的关键突破:揭示了真菌染色体非均等分配及卵菌染色体融合驱动毒力进化的新规律;阐明了豆科植物中激酶MtLICK1/2通过磷酸化修饰MtLYK3精确调控“共生-免疫”转换的分子开关机制;发现了禾本科作物中串联激酶与NLR免疫受体以“sensor-executor”配对模式协同激活免疫的新范式;创新性地提出了“感受型与辅助型NLR共转移”策略以克服物种限制,并开发出基于病原蛋白酶切割的自激活NLR嵌合体工程化改造技术,赋予植物广谱抗性。上述研究成果从病原适应性进化、宿主免疫精细调控及受体工程应用三个维度,深化了对植物-病原-环境互作复杂网络的理解,成功将基础机制认知转化为作物抗病遗传改良实践,为设计培育具有持久、广谱抗性的作物新品种提供了坚实的理论基础与可操作的技术路径。

Abstract: The plant innate immune system serves as the primary defense against pathogen invasion, with well-established frameworks for receptor recognition and signal transduction mechanisms. This review highlights recent key breakthroughs in plant immunity research from Chinese institutions: 1) The discovery of novel mechanisms driving virulence evolution through asymmetric chromosome distribution in fungi and chromosome fusion in oomycetes; 2) Elucidation of the kinase MtLICK1/2-mediated molecular switch that precisely regulates the symbiosis-immunity trade-off via phosphorylation of MtLYK3 in legumes; 3) Identification of a “sensor-executor” paradigm where tandem kinases and NLR immune receptors cooperatively activate immunity in cereal crops; and 4) Innovative strategies including co-transfer of sensor-helper NLR pairs to overcome taxonomic restrictions, and engineering of autoactive NLR chimeras activated by pathogen protease cleavage for broad-spectrum resistance. These advances collectively deepen our understanding of plant-pathogen-environment interactions across three dimensions—pathogen adaptive evolution, sophisticated host immune regulation, and receptor engineering applications. Crucially, fundamental mechanistic insights have been successfully translated into crop genetic improvement practices. The integrated findings provide a robust theoretical foundation and actionable technological framework for designing novel crop varieties with durable, broad-spectrum disease resistance to address mounting agricultural biosecurity threats.

Key words: plant immunity,, plant-microbe interactions,, disease resistance proteins,, genetic improvement for disease resistance