植物学报 ›› 2025, Vol. 60 ›› Issue (5): 679-692.DOI: 10.11983/CBB25149  cstr: 32102.14.CBB25149

• 热点评述 • 上一篇    下一篇

水杨酸介导的植物免疫反应: 从代谢、感知到免疫激活

朱孝波, 王立印, 陈学伟*()   

  1. 四川农业大学, 西南作物基因资源发掘与利用国家重点实验室/新基石科学实验室, 成都 611130
  • 收稿日期:2025-08-16 接受日期:2025-09-02 出版日期:2025-09-10 发布日期:2025-09-02
  • 通讯作者: *E-mail: xwchen88@163.com
  • 基金资助:
    国家自然科学基金(32425005);国家自然科学基金(32472565);四川省自然科学基金(2024NSFSC0326)

Salicylic Acid-mediated Plant Immune Responses: From Metabolism and Perception to Immune Activation

Zhu Xiaobo, Wang Liyin, Chen Xuewei*()   

  1. New Cornerstone Science Laboratory/State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2025-08-16 Accepted:2025-09-02 Online:2025-09-10 Published:2025-09-02
  • Contact: *E-mail: xwchen88@163.com

摘要: 水杨酸(SA)是一种植物酚类天然合成产物, 对免疫反应具有重要的调控作用。植物主要通过异分支酸合酶(ICS)途径和苯丙氨酸解氨酶(PAL)途径合成水杨酸, 并被水杨酸受体NPR1等感知, 激活植物免疫反应。拟南芥(Arabidopsis thaliana)等十字花科植物主要通过ICS途径合成水杨酸, 而单子叶植物和非十字花科双子叶植物则主要通过PAL途径合成水杨酸。长期以来, 人们对水杨酸PAL合成途径的认识不完整, 导致水稻(Oryza sativa)等作物中水杨酸介导的植物免疫反应研究滞后, 极大地制约了作物抗病育种改良进程。近期, 我国3个研究团队独立破解了水杨酸在水稻等作物中的PAL合成途径。该文以此为契机, 综述了水杨酸介导的植物免疫反应研究进展, 着重梳理了植物体内的水杨酸合成途径, 总结了水杨酸被植物感知并激活免疫反应的机制, 展望了水杨酸调控植物免疫反应研究中存在的问题和未来的研究方向, 以期为相关理论研究和抗病育种应用提供新思路和新方向。

关键词: 水杨酸, 合成途径, 水杨酸感知, NPR1, 免疫反应

Abstract: Salicylic acid (SA) is a natural phenolic compound in plants that plays a crucial regulatory role in plant immune responses. Plants primarily synthesize SA through two pathways: the isochorismate synthase (ICS) pathway and the phenylalanine ammonia-lyase (PAL) pathway. The synthesized SA is perceived by receptors such as nonexpressor of pathogenesis-related genes 1 (NPR1), which subsequently activate immune responses. In Brassicaceae species like Arabidopsis thaliana, SA is mainly synthesized via the ICS pathway, whereas monocots and non-Brassicaceae dicots predominantly rely on the PAL pathway. For a long time, understanding of SA biosynthesis via the PAL pathway has been incomplete, hindering research on SA-mediated immunity in crops and significantly limiting progress in crop disease-resistant breeding. Recently, three research groups from China independently elucidated the PAL-mediated SA biosynthesis pathway in crops. Building on these breakthroughs, this review summarizes recent advances in the study of SA-mediated plant immune responses. We primarily focus on the biosynthetic pathways of SA within plants, the mechanisms by which SA is perceived and activates immune responses, and discuss current challenges and future directions in SA-mediated immunity research. We hope this review provides new insights and perspectives for both theoretical studies and practical applications in crop disease-resistant breeding.

Key words: salicylic acid, biosynthesis pathway, salicylic acid perception, NPR1, immune responses