植物学报 ›› 2025, Vol. 60 ›› Issue (5): 669-678.DOI: 10.11983/CBB25052  cstr: 32102.14.CBB25052

• 热点评述 •    下一篇

植物免疫机制新突破

刘德水1, 岳宁2,*(), 刘玉乐2   

  1. 1北京生命科技研究院有限公司, 北京 102211
    2清华大学生命科学学院, 北京 100084
  • 收稿日期:2025-04-01 接受日期:2025-06-03 出版日期:2025-09-10 发布日期:2025-06-10
  • 通讯作者: *E-mail: yuening94@163.com
  • 作者简介:刘玉乐, 清华大学生命科学学院教授, 国家杰出青年基金获得者。长期从事植物病毒和细胞自噬相关研究, 在植物抗病毒免疫、病毒病理、病毒载体及细胞自噬方面做出了一些有国际影响的工作。以通讯作者或第一作者在Nature、Cell和Cell Host & Microbe等期刊发表论文60余篇。主编教材《生物化学》(清华大学出版社, 2023)。论文被Web of Science共引用超过21829次。自2014年起每年均入选Elsevier发布的中国高被引学者榜单
  • 基金资助:
    北京生命科技研究院重点项目(2024400CB0120);国家自然科学基金(32300123)

Emerging Innovation in Plant Immunity

Liu Deshui1, Yue Ning2,*(), Liu Yule2   

  1. 1Beijing Life Science Academy, Beijing 102211, China
    2School of Life Sciences, Tsinghua University, Beijing 100084, China
  • Received:2025-04-01 Accepted:2025-06-03 Online:2025-09-10 Published:2025-06-10
  • Contact: *E-mail: yuening94@163.com

摘要: 近年来, 植物抗病免疫研究取得了突破性进展, 包括病原识别、免疫信号转导及植物-病原-介体-环境互作等。这些研究不仅增强了我们对植物抗病免疫的理解, 还为分子育种和分子遗传学研究奠定了坚实的基础。近期, 国内多家单位相继在植物免疫机制研究中取得了令人振奋的新突破, 从植物应对病原的识别机制、次级代谢产物参与植物抗病反应过程、 禾本科作物的抗病模块和基于人工智能的抗病小肽设计等不同层面对植物免疫反应的分子机制进行了深入解析。随着CRISPR/Cas9基因编辑技术和人工智能的快速发展, 这些研究成果将有助于创制具有抗病特性的新种质, 从而加速抗病作物新品种的培育过程, 对于抗病生物育种和国家粮食安全具有重要意义。

关键词: 植物免疫, 植保素, 识别病毒侵染, 抗病育种

Abstract: In recent years, we have witnessed transformative breakthroughs in plant disease resistance research, particularly in deciphering the intricate interplay between hosts and pathogens. Cutting-edge discoveries span pathogen recognition mechanisms, immune signaling cascades, and multi-layered interactions integrating plants, pathogens, vectors, and environmental variables. Notably, pioneering studies from domestic research institutions have driven progress across pathogen-sensing systems, secondary metabolite-mediated defense, immune module engineering in crops, and artificial intelligence (AI)-powered solutions for pathogen-resistant peptide design. The rapid development of CRISPR/ Cas9-based gene editing and AI technologies has further empowered researchers to engineer disease-resistant crop varieties with unprecedented precision. Such progress holds profound implications for ensuring national food security and advancing strategic priorities in disease-resistant crop breeding, marking a transformative era in agricultural biotechnology and sustainable agriculture.

Key words: plant immunity, phytoalexins, perception of viral infection, disease resistance breeding