植物学报 ›› 2025, Vol. 60 ›› Issue (5): 1-0.DOI: 10.11983/CBB25149 cstr: 32102.14.CBB25149
• 热点评述 •
朱孝波,王立印,陈学伟
收稿日期:
2025-08-16
修回日期:
2025-08-28
出版日期:
2025-09-10
发布日期:
2025-09-02
通讯作者:
陈学伟
基金资助:
xiaobo zhu1,Liyin Wangchen xueweixuewei
Received:
2025-08-16
Revised:
2025-08-28
Online:
2025-09-10
Published:
2025-09-02
Contact:
chen xueweixuewei
摘要: 水杨酸(Salicylic acid,SA)是一种植物酚类天然合成产物,对免疫反应具有重要的调控作用。植物主要通过异分支酸合成酶(Isochorismate synthase,ICS)途径和苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)途径合成水杨酸,并被水杨酸受体NPR1(Nonexpressor of pathogenesis-related genes 1)等感知,激活植物免疫反应。拟南芥等十字花科植物主要通过ICS途径合成水杨酸,而单子叶植物和非十字花科的双子叶植物则主要通过PAL途径合成水杨酸。长期以来,人们对PAL途径合成水杨酸的认识并不完整,导致水稻等作物中水杨酸介导植物免疫反应的研究滞后,极大地制约了作物抗病育种改良的进程。近期,我国三个研究团队独立破解了水杨酸在水稻等作物中的PAL合成途径。本文以此为契机,综述了水杨酸介导的植物免疫反应研究进展,着重梳理了水杨酸在植物体内的合成途径,总结了水杨酸被植物感知并激活免疫反应的机制,展望了水杨酸调控植物免疫反应研究中存在的问题和未来的研究方向,以期为水杨酸调控植物免疫反应的理论研究和抗病育种应用研究提供新思路和新方向。
朱孝波 王立印 陈学伟. 水杨酸介导的植物免疫反应:从代谢、感知到免疫激活. 植物学报, 2025, 60(5): 1-0.
xiaobo zhu Liyin Wang chen xueweixuewei. Salicylic Acid-Mediated Plant Immune Responses: From Metabolism and Perception to Immune Activation. Chinese Bulletin of Botany, 2025, 60(5): 1-0.
Castelló MJ, Medina-Puche L, Lamilla J, and Tornero P (2018). NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLOS ONE 13, e0209835.Choi HW, and Klessig DF (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology 16, 232.Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, and Zhang Y (2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in Transcriptional regulation of plant immunity. Cell 173, 1454-1467.e1415.Fang X, Xie Y, Yuan Y, Long Q, Zhang L, Abid G, and Zhang W (2025). The role of salicylic acid in plant defense responses against biotic stresses. Plant Hormones 1, e004.Fu ZQ, and Dong X (2013). Systemic acquired resistance: turning local Infection into global defense. Annual Review of Plant Biology 64, 839-863.Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, and Ryals J (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756.Huang W, Wang Y, Li X, and Zhang Y (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant 13, 31-41.Jones JDG, and Dangl JL (2006). The plant immune system. Nature 444, 323-329.Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, Dillard L, Powers J, Withers J, Zhao J, Guan Z, Borgnia MJ, Bartesaghi A, Dong X, and Zhou P (2022). Structural basis of NPR1 in activating plant immunity. Nature 605, 561-566.Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, and Mou Z (2023). N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nature Communications 14, 6848.Lim G-H (2023). Regulation of salicylic acid and N-hydroxy-pipecolic acid in systemic acquired resistance. Plant Pathol J 39, 21-27.Liu Y, Xu L, Wu M, Wang J, Qiu D, Lan J, Lu J, Zhang Y, Li X, and Zhang Y (2025). Three-step biosynthesis of salicylic acid from benzoyl-CoA in plants. Nature, doi.org/10.1038/s41586-41025-09185-41587.Pajerowska-Mukhtar Karolina M, Wang W, Tada Y, Oka N, Tucker Chandra L, Fonseca Jose P, and Dong X (2012). The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Current Biology 22, 103-112.Peng Y, Yang J, Li X, and Zhang Y (2021). Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology 72, 761-791.Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, and Van Wees SCM (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489-521.Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, and Feussner I (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498-502.Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, and Dong X (2015). Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host & Microbe 18, 169-182.Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang S-C, Fonseca A, Wildermuth MC, Greenberg JT, and Holuigue L (2018). PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiology 176, 2515-2531.Spoel SH, and Dong X (2024). Salicylic acid in plant immunity and beyond. The Plant Cell 36, 1451-1464.Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, and Zhang Y (2015). ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications 6, 10159.Ullah C, Chen Y-H, Ortega MA, and Tsai C-J (2023). The diversity of salicylic acid biosynthesis and defense signaling in plants: Knowledge gaps and future opportunities. Current Opinion in Plant Biology 72, 102349.Vlot AC, Dempsey D, apos, Amick M, and Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47, 177-206.Wang D, Weaver ND, Kesarwani M, and Dong X (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036-1040.Wang Y, Song S, Zhang W, Deng Q, Feng Y, Tao M, Kang M, Zhang Q, Yang L, Wang X, Zhu C, Wang X, Zhu W, Zhu Y, Cao P, Chen J, Pan J, Feng S, Chen X, Dai H, Song S, Yang J, Zhao T, Cao F, Tao Z, Shen X, Last RL, Hu J, Yu J, Fan P, and Pan R (2025). Deciphering phenylalanine-derived salicylic acid biosynthesis in plants. Nature, doi.org/10.1038/s41586-41025-09280-41589.Wildermuth MC, Dewdney J, Wu G, and Ausubel FM (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle ID, De Luca V, and Després C (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1, 639-647.Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, Nakai M, and Shiina T (2013). Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signaling & Behavior 8, e23603.Ye H, Hou Q, Lv H, Shi H, Wang D, Chen Y, Xu T, Wang M, He M, Yin J, Lu X, Tang Y, Zhu X, Zou L, Chen X, Li J, Wang B, and Wang J (2024). D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. Journal of Integrative Plant Biology 66, 1827-1830.Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, Nakagami H, Takahashi A, Arai R, and Katou S (2018). Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Bioscience Reports 38, BSR20171457.Zavaliev R, and Dong X (2024). NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell 84, 131-141.Zavaliev R, Mohan R, Chen T, and Dong X (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093-1108.e1018.Zhao Y, Zhu X, Chen X, and Zhou J-M (2022). From plant immunity to crop disease resistance. Journal of Genetics and Genomics 49, 693-703.Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald PC, and Chen X (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences 115, 3174-3179.Zhu B, Zhang Y, Gao R, Wu Z, Zhang W, Zhang C, Zhang P, Ye C, Yao L, Jin Y, Mao H, Tou P, Huang P, Zhao J, Zhao Q, Liu C-J, and Zhang K (2025). Complete biosynthesis of salicylic acid from phenylalanine in plants. Nature, doi.org/10.1038/s41586-41025-09175-41589.Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, and Chen X (2016). The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLOS Genetics 12, e1006311.吴楠 覃, 彭志红, 夏石头 (2022). 系统获得性抗性移动信号Pip/NHP研究进展. 植物学报 57, 412-421.张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, and 周俭民 (2019). 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战. 中国科学:生命科学 49, 1479-1507.朱孝波, 李伟滔, 贺闽, 王静, 于振良, and 陈学伟 (2020). 作物广谱抗病研究现状与关键科学问题. 中国科学基金 34, 401-410 |
[1] | 江亚楠, 徐雨青, 魏毅铤, 陈钧, 张蓉菀, 赵蓓蓓, 林宇翔, 饶玉春. 水稻抗病调控机制研究进展[J]. 植物学报, 2025, 60(5): 1-0. |
[2] | 史世肸, 严顺平. 高效液相色谱法检测水杨酸的优化[J]. 植物学报, 2025, 60(5): 1-0. |
[3] | 粟思琳, 唐先宇, 陈祎, 王婷, 夏石头. 系统获得性抗性的转录调控[J]. 植物学报, 2025, 60(5): 1-0. |
[4] | 朱润铖, 蔡锡安, 黄娟. 植物防御相关挥发性有机物排放及对氮沉降的响应[J]. 植物生态学报, 2025, 49(5): 681-696. |
[5] | 叶灿, 姚林波, 金莹, 高蓉, 谭琪, 李旭映, 张艳军, 陈析丰, 马伯军, 章薇, 张可伟. 水稻水杨酸代谢突变体高通量筛选方法的建立与应用[J]. 植物学报, 2025, 60(4): 586-596. |
[6] | 杨莉, 曲茜彤, 陈子航, 邹婷婷, 王全华, 王小丽. 菠菜AT-hook基因家族鉴定与表达谱分析[J]. 植物学报, 2025, 60(3): 377-392. |
[7] | 袁民航, 辛秀芳. 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析[J]. 植物学报, 2023, 58(5): 682-686. |
[8] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[9] | 王伟, 唐定中. 两类免疫受体强强联手筑牢植物免疫防线[J]. 植物学报, 2021, 56(2): 142-146. |
[10] | 曹栋栋,陈珊宇,秦叶波,吴华平,阮关海,黄玉韬. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理[J]. 植物学报, 2020, 55(1): 49-61. |
[11] | 代宇佳,罗晓峰,周文冠,陈锋,帅海威,杨文钰,舒凯. 生物和非生物逆境胁迫下的植物系统信号[J]. 植物学报, 2019, 54(2): 255-264. |
[12] | 闫佳, 刘雅琼, 侯岁稳. 植物抗病蛋白研究进展[J]. 植物学报, 2018, 53(2): 250-263. |
[13] | 李冬梅, 王路雅, 张澜玥, 帖子阳, 毛惠平. 拟南芥短肽激素PROPEP基因家族在根生长中的作用机理[J]. 植物学报, 2016, 51(2): 202-209. |
[14] | 雷珍珍, 叶晶龙, 程海丽, 陈云, 望彗星, 许克静, 乐超银. 花魔芋抗软腐病植株的鉴定及其抗性机理的初步研究[J]. 植物学报, 2013, 48(3): 295-302. |
[15] | 李星, 郝鹤, 池剑亭, 王红, 叶和春. 利用异源生物生产青蒿素及其前体的研究进展[J]. 植物学报, 2012, 47(6): 571-580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||