植物学报 ›› 2024, Vol. 59 ›› Issue (6): 1024-1040.DOI: 10.11983/CBB24037 cstr: 32102.14.CBB24037
所属专题: 玉米生物学与分子设计(2024年59卷6期)
杨文丽1,2,3,†, 李钊3,†, 刘志铭2, 张志华3, 杨今胜2, 吕艳杰1,2,*(), 王永军1,2,*(
)
收稿日期:
2024-03-09
接受日期:
2024-05-27
出版日期:
2024-11-10
发布日期:
2024-06-11
通讯作者:
*吕艳杰, 博士, 研究员, 主要从事玉米栽培生理研究。E-mail: lvyanjie_1977@163.com;王永军, 博士, 研究员, 主要研究方向为玉米生理生态。E-mail: yjwang2004@126.com
作者简介:
†共同第一作者
基金资助:
Wenli Yang1,2,3,†, Zhao Li3,†, Zhiming Liu2, Zhihua Zhang3, Jinsheng Yang2, Yanjie Lü1,2,*(), Yongjun Wang1,2,*(
)
Received:
2024-03-09
Accepted:
2024-05-27
Online:
2024-11-10
Published:
2024-06-11
Contact:
*E-mail: lvyanjie_1977@163.com;yjwang2004@126.com
About author:
†These authors contributed equally to this paper
摘要: 叶片作为植物的光合器官, 其衰老进程对于产量形成有重要影响, 但关于叶片衰老与叶际微生物之间的关系研究较少。为探讨玉米(Zea mays)叶片衰老过程对叶际细菌群落的影响, 以东北春玉米区3个不同熟期玉米品种(早熟品种黑科玉17 (H17)、中熟品种中单111 (Z111)和晚熟品种沈玉21 (S21))为试验材料, 从早熟品种开花期开始对3个玉米品种穗位叶进行5次取样, 测定衰老生理指标, 同时基于高通量测序技术测定叶际内源和外源细菌的群落组成。结果表明,在生育后期, 中熟和晚熟品种的叶片含水量及过氧化物酶(POD)和超氧化物歧化酶(SOD)活性显著高于早熟品种。在门水平, 蓝菌门(Cyanobacteria)是中熟和晚熟的特有菌门; 在属水平, 玉米叶片内外源共有细菌鞘氨醇单胞菌属(Sphingomonas)、甲基杆菌属(Methylobacterium)和异常球菌属(Deinococcus)相对丰度在IV和V时期显著降低, 而内源细菌链霉菌属(Streptomyces)和外源细菌P3OB-42属则在衰老后期显著富集, 且3个品种变化趋势相似, 相对丰度差异显著。内外源细菌相对丰度存在显著差异, 前5位的外源细菌占60%以上, 而对内源细菌而言, 前5位仅占30%以上。叶片可溶性糖含量、光合色素含量和SOD活性与叶际细菌群落结构和丰富度显著相关。综上, 中熟和晚熟品种能有效延长叶片持绿期, 维持生育后期叶片生理活性, 延缓衰老。衰老对内源细菌群落组成和多样性的影响显著大于外源细菌, 不同熟期品种间存在显著分异的菌属, 且叶片可溶性糖含量、光合色素含量和SOD活性是影响叶际细菌群落以及优势物种的关键因子。
杨文丽, 李钊, 刘志铭, 张志华, 杨今胜, 吕艳杰, 王永军. 不同熟期玉米叶片衰老特性及其对叶际细菌的影响. 植物学报, 2024, 59(6): 1024-1040.
Wenli Yang, Zhao Li, Zhiming Liu, Zhihua Zhang, Jinsheng Yang, Yanjie Lü, Yongjun Wang. Senescence Characteristics of Maize Leaves at Different Maturity Stages and Their Effect on Phyllosphere Bacteria. Chinese Bulletin of Botany, 2024, 59(6): 1024-1040.
图1 三个玉米品种叶片在不同取样时间的表型 (A) IV取样时间点的玉米整株(bar=20 cm); (B) IV取样时间点的穗位叶(bar=10 cm); (C) 不同时期叶面积指数的变化
Figure 1 Leaf phenotype of three maize varieties at different sampling times (A) Whole maize plant at the sampling time point IV (bar=20 cm); (B) Ear leaf at the sampling time point IV (bar=10 cm); (C) Changes in leaf area index at different sampling period
Hybrids | Senescence equation | Fit coefficient (R2) | Senescence traits parameter | ||||
---|---|---|---|---|---|---|---|
RGLAM (%) | Vm (%) | Vmax (%) | Ts (days) | Tmax (days) | |||
H17 | y=e4.2169-0.0823x/(1+e4.2169-0.0823x) | 0.9918 | 20.60 | 1.19 | 2.06 | 10.88 | 51.2 |
Z111 | y=e4.0155-0.0744x/(1+e4.0155-0.0744x) | 0.9935 | 40.69 | 0.89 | 1.86 | 11.20 | 54.0 |
S21 | y=e3.7835-0.0655x/(1+e3.7835-0.0655x) | 0.9954 | 47.61 | 0.78 | 1.64 | 12.30 | 57.8 |
表1 三个玉米品种的叶片衰老特性
Table 1 Leaf senescence characteristics of three maize varieties
Hybrids | Senescence equation | Fit coefficient (R2) | Senescence traits parameter | ||||
---|---|---|---|---|---|---|---|
RGLAM (%) | Vm (%) | Vmax (%) | Ts (days) | Tmax (days) | |||
H17 | y=e4.2169-0.0823x/(1+e4.2169-0.0823x) | 0.9918 | 20.60 | 1.19 | 2.06 | 10.88 | 51.2 |
Z111 | y=e4.0155-0.0744x/(1+e4.0155-0.0744x) | 0.9935 | 40.69 | 0.89 | 1.86 | 11.20 | 54.0 |
S21 | y=e3.7835-0.0655x/(1+e3.7835-0.0655x) | 0.9954 | 47.61 | 0.78 | 1.64 | 12.30 | 57.8 |
图2 三个不同玉米品种叶片生理生化指标分析 SOD: 超氧化物歧化酶; POD: 过氧化物酶; MDA: 丙二醛; TC: 全碳。* 表示在同一取样时期3个品种间差异显著(P<0.05)。
Figure 2 Analysis of leaf physiological and biochemical indexes of three maize varieties SOD: Superoxide dismutase; POD: Peroxidase; MDA: Malondialdehyde; TC: Total carbon. * indicate significant differences among the three varieties at the same sampling period (P<0.05).
图3 三个玉米品种叶片在不同发育时期叶际微生物的变化 (A) 不同样品中内源细菌扩增子序列变体(ASVs)总数; (B) 不同样品中外源细菌ASVs总数; (C) 不同样品中内源细菌共有ASVs; (D) 不同样品中外源细菌共有ASVs; (E) 不同样品中内源细菌群落Chao1多样性指数; (F) 不同样品中外源细菌群落Chao1多样性指数; (G) 不同样品中内源细菌群落Shannon多样性指数; (H) 不同样品中外源细菌群落Shannon多样性指数。不同小写字母表示同一品种不同发育时期间差异显著(P<0.05)。
Figure 3 Changes of leaf microorganisms of three maize varieties in different development periods (A) Total number of endogenous bacterial amplicon sequence variants (ASVs) in different samples; (B) Total number of exogenous bacterial ASVs in different samples; (C) Endogenous bacterial shared ASVs in different samples; (D) Exogenous bacterial shared ASVs in different samples; (E) Chao1 diversity index of endogenous bacterial communities in different samples; (F) Chao1 diversity index of exogenous bacterial communities in different samples; (G) Shannon’s diversity index of endogenous bacterial communities in different samples; (H) Shannon’s diversity index of exogenous bacterial communities in different samples. Different lowercase letters indicate significant differences among different development periods of the same species (P<0.05).
图4 不同熟期品种玉米在不同发育时间点叶际微生物群落间的相关性 (A)-(C) 三个玉米品种叶际内源细菌群落的相关性; (D)-(F) 三个玉米品种叶际外源细菌群落的相关性。饼状图和颜色代表Pearson相关系数值。
Figure 4 Correlation among leaf microbial communities of three maize varieties at different development time points (A)-(C) Correlation of endogenous bacterial communities in leaves of three maize varieties; (D)-(F) Correlation of exogenous bacterial communities in leaves of three maize varieties. Pie charts and colors represent Pearson correlation coefficient values.
图5 三个玉米品种叶片微生物群落组成 (A) 内源细菌门水平群落组成; (B) 外源细菌门水平群落组成; (C) 内源细菌属水平群落组成; (D) 外源细菌属水平群落组成; (E) 内源细菌属水平优势群落组成(虚线框内表示特异优势菌属, 虚线框外表示与外源细菌共有的优势菌属); (F) 外源细菌属水平优势群落组成(虚线框内表示特异优势菌属, 虚线框外表示与内源细菌共有的优势菌属)。
Figure 5 Leaf microbial community composition of 3 maize varieties at different maturity stages (A) The community composition of endogenous bacteria at the phylum level; (B) The community composition of exogenous bacteria at the phylum level; (C) The community composition of endogenous bacteria at the genus level; (D) The community composition of exogenous bacteria at the genus level; (E) Composition of horizontally dominant communities of endogenous bacterial genera (the dashed box indicate specific dominant genera, and outside the dashed box indicate dominant genera shared with exogenous bacteria); (F) Composition of horizontally dominant communities of exogenous bacterial genera (the dashed box indicate specific dominant genera, and outside the dashed box indicate dominant genera shared with endogenous bacteria).
Samples | Nodes | Edges | Density | Average path length |
---|---|---|---|---|
I-H17 | 14 | 20 | 0.235 | 1.812 |
I-Z111 | 19 | 27 | 0.171 | 2.417 |
I-S21 | 19 | 32 | 0.222 | 2.625 |
II-H17 | 22 | 40 | 0.253 | 2.633 |
II-Z111 | 18 | 31 | 0.298 | 2.252 |
II-S21 | 21 | 34 | 0.258 | 2.717 |
III-H17 | 25 | 46 | 0.275 | 2.771 |
III-Z111 | 29 | 41 | 0.329 | 2.256 |
III-S21 | 27 | 37 | 0.278 | 2.820 |
IV-H17 | 21 | 38 | 0.202 | 2.157 |
IV-Z111 | 22 | 30 | 0.125 | 2.160 |
IV-S21 | 22 | 34 | 0.184 | 2.638 |
V-H17 | 15 | 22 | 0.195 | 1.447 |
V-Z111 | 18 | 28 | 0.185 | 1.707 |
V-S21 | 19 | 33 | 0.122 | 1.612 |
表2 三个玉米品种在不同时期(I-V)内源细菌共现网络属性参数
Table 2 Properties of endogenous bacterial co-occurrence network attributes in three maize varieties at different periods (I-V)
Samples | Nodes | Edges | Density | Average path length |
---|---|---|---|---|
I-H17 | 14 | 20 | 0.235 | 1.812 |
I-Z111 | 19 | 27 | 0.171 | 2.417 |
I-S21 | 19 | 32 | 0.222 | 2.625 |
II-H17 | 22 | 40 | 0.253 | 2.633 |
II-Z111 | 18 | 31 | 0.298 | 2.252 |
II-S21 | 21 | 34 | 0.258 | 2.717 |
III-H17 | 25 | 46 | 0.275 | 2.771 |
III-Z111 | 29 | 41 | 0.329 | 2.256 |
III-S21 | 27 | 37 | 0.278 | 2.820 |
IV-H17 | 21 | 38 | 0.202 | 2.157 |
IV-Z111 | 22 | 30 | 0.125 | 2.160 |
IV-S21 | 22 | 34 | 0.184 | 2.638 |
V-H17 | 15 | 22 | 0.195 | 1.447 |
V-Z111 | 18 | 28 | 0.185 | 1.707 |
V-S21 | 19 | 33 | 0.122 | 1.612 |
Samples | Nodes | Edges | Density | Average path length |
---|---|---|---|---|
I-H17 | 63 | 184 | 0.039 | 2.466 |
I-Z111 | 65 | 160 | 0.040 | 2.937 |
I-S21 | 53 | 130 | 0.037 | 2.445 |
II-H17 | 77 | 212 | 0.045 | 2.101 |
II-Z111 | 84 | 289 | 0.048 | 1.993 |
II-S21 | 89 | 371 | 0.056 | 2.161 |
III-H17 | 150 | 632 | 0.056 | 3.481 |
III-Z111 | 138 | 599 | 0.065 | 3.483 |
III-S21 | 136 | 605 | 0.067 | 3.300 |
IV-H17 | 120 | 321 | 0.051 | 3.139 |
IV-Z111 | 95 | 144 | 0.037 | 2.676 |
IV-S21 | 81 | 125 | 0.049 | 2.743 |
V-H17 | 85 | 127 | 0.033 | 2.559 |
V-Z111 | 92 | 127 | 0.031 | 2.595 |
V-S21 | 74 | 117 | 0.040 | 2.632 |
表3 三个玉米品种在不同时期(I-V)外源细菌共现网络属性参数
Table 3 Properties of exogenous bacterial co-occurrence network attributes in three maize varieties at different periods (I-V)
Samples | Nodes | Edges | Density | Average path length |
---|---|---|---|---|
I-H17 | 63 | 184 | 0.039 | 2.466 |
I-Z111 | 65 | 160 | 0.040 | 2.937 |
I-S21 | 53 | 130 | 0.037 | 2.445 |
II-H17 | 77 | 212 | 0.045 | 2.101 |
II-Z111 | 84 | 289 | 0.048 | 1.993 |
II-S21 | 89 | 371 | 0.056 | 2.161 |
III-H17 | 150 | 632 | 0.056 | 3.481 |
III-Z111 | 138 | 599 | 0.065 | 3.483 |
III-S21 | 136 | 605 | 0.067 | 3.300 |
IV-H17 | 120 | 321 | 0.051 | 3.139 |
IV-Z111 | 95 | 144 | 0.037 | 2.676 |
IV-S21 | 81 | 125 | 0.049 | 2.743 |
V-H17 | 85 | 127 | 0.033 | 2.559 |
V-Z111 | 92 | 127 | 0.031 | 2.595 |
V-S21 | 74 | 117 | 0.040 | 2.632 |
图6 三个玉米品种在不同生育期叶片理化性质与叶际微生物的关系 (A) 叶片理化性质与细菌多样性的相关性(E: 内源; F: 外源); (B) 叶片理化性质与叶片内源和外源细菌群落结构的Mantel相关关系; (C) 内源细菌优势物种与叶片理化性质的相关性分析; (D) 外源细菌优势物种与叶片理化性质的相关性分析。POD、SOD、MDA和TC同图2。*、**和***分别表示在0.05、0.01和0.001水平上差异显著。
Figure 6 Relationships between leaf physicochemical properties and phyllosphere microorganisms of three maize varieties at different reproductive stages (A) Correlation between leaf physicochemical properties and bacterial diversity (E: Endogenous; F: Exogenous); (B) Mantel correlation between leaf physicochemical properties and leaf endogenous and exogenous bacterial community structure; (C) Correlation analysis between endogenous bacterial dominant species and leaf physicochemical properties; (D) Correlation analysis between exogenous bacterial dominant species and leaf physicochemical properties. POD, SOD, MDA and TC are the same as shown in Figure 2. *, **, and *** indicate significant differences at 0.05, 0.01, and 0.001 levels, respectively.
[1] | Arnault G, Mony C, Vandenkoornhuyse P (2023). Plant microbiota dysbiosis and the Anna Karenina Principle. Trends Plant Sci 28, 18-30. |
[2] | Borrell AK, Hammer GL, Henzell RG (2000). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40, 1037-1048. |
[3] |
Bulgarelli D, Schlaeppi K, Spaepen S, Schulze-Lefert P (2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
DOI PMID |
[4] |
Canfield DE, Glazer AN, Falkowski PG (2010). The evolution and future of Earth’s nitrogen cycle. Science 330, 192-196.
DOI PMID |
[5] | Chen JX, Wang XF (2015). Experimental Guide to Plant Physiology. Guangzhou: South China University of Technology Press. pp. 72-73. (in Chinese) |
陈建勋, 王晓峰 (2015). 植物生理学实验指导. 广州: 华南理工大学出版社. pp. 72-73. | |
[6] | Chen YF, Zhou DB, Qi DF, Gao ZF, Xie JH, Luo YP (2018). Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Front Microbiol 8, 2704. |
[7] | Cheng JE, Su P, Zhang ZH, Zheng LM, Wang ZY, Hamid MR, Dia JP, Du XH, Chen LJ, Zhai ZY, Kong XT, Liu Y, Zhang DY (2022). Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods. PLoS One 17, e0262517. |
[8] | Duan J, Liang CY, Huang YW (1997). Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin 23, 139-144. (in Chinese) |
段俊, 梁承邺, 黄毓文 (1997). 杂交水稻开花结实期间叶片衰老. 植物生理学报 23, 139-144. | |
[9] |
Eiler A, Heinrich F, Bertilsson S (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6, 330-342.
DOI PMID |
[10] |
Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2, 561-570.
DOI PMID |
[11] | Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29, 1821-1829. |
[12] | Hernández JA, Jiménez A, Mullineaux P, Sevilia F (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23, 853-862. |
[13] | Hou Q (2020). The Rhizosphere Microbial Diversity During the Growth Period of Continuous Cropping Potato and the Effect of Fertilization. Master’s thesis. Beijing: Chinese Academy of Agricultural Sciences. pp. 13-17. (in Chinese) |
侯乾 (2020). 连作马铃薯全生育期根际微生物多样性研究及施肥对其的影响. 硕士论文. 北京: 中国农业科学院. pp. 13-17. | |
[14] | Hu TT, Yuan LN, Wang JF, Kang SZ, Li FS (2010). Antioxidation responses of maize roots and leaves to partial root-zone irrigation. Agric Water Manage 98, 164-171. |
[15] | Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010). Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76, 8117-8125. |
[16] |
Kolvenbach BA, Corvini PFX (2012). The degradation of alkylphenols by Sphingomonas sp. strain TTNP3—a review on seven years of research. New Biotechnol 30, 88-95.
DOI PMID |
[17] | Li ZW (2014). The Expression Alteration of Various Genes Related to Sugar Metabolism in Senescing Leaves and Its Antioxidation Modulation for esl Mutant. PhD dissertation. Hangzhou: Zhejiang University. pp. 17-25. (in Chinese) |
李兆伟 (2014). 水稻叶片早衰突变体的糖代谢基因表达与抗氧化生理调控. 博士论文. 杭州: 浙江大学. pp. 17-25. | |
[18] | Lindow SE, Brandl MT (2003). Microbiology of the phyllosphere. Appl Environ Microbiol 69, 1875-1883. |
[19] | Liu H, Wei LL, Zhu LF, Wei H, Bai YX, Liu XL, Li SB (2023). Research progress of Sphingomonas. Microbiol China 50, 2738-2752. (in Chinese) |
刘辉, 韦璐璐, 朱龙发, 韦豪, 白云霞, 刘小玲, 李树波 (2023). 鞘氨醇单胞菌的研究进展. 微生物学通报 50, 2738-2752. | |
[20] | Liu KC, Wang QC, Zhang HS, Feng K (2003). Advance in research of physiological mechanism and genetic traits of stay-green of maize. Shandong Agric Sci 35(2), 48-51. (in Chinese) |
刘开昌, 王庆成, 张海松, 冯凯 (2003). 玉米叶片保绿性生理机理及遗传特性研究进展. 山东农业科学 35(2), 48-51. | |
[21] | Liu YY, Zhang C, Jiang SJ, Zhou ZF, Chen M, Zhang W, Wang J (2015). Functional analysis of drB0118 gene in response to abiotic stress in Deinococcus radiodurans. Microbiol China 42, 1474-1481. (in Chinese) |
刘盈盈, 张陈, 江世杰, 周正富, 陈明, 张维, 王劲 (2015). 非生物胁迫下耐辐射异常球菌drB0118基因功能分析. 微生物学通报 42, 1474-1481. | |
[22] | Luo LY, Wang P, Zhai ZY, Su P, Tan XQ, Zhang DY, Zhang Z, Liu Y (2019). The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities. AMB Express 9, 173. |
[23] | Ma YY, Chu HY (2021). Field sampling and sample storage of wheat-associated microbiomes. Bio-101 e2003668. doi: 10.21769/BioProtoc.2003668. (in Chinese) |
马玉颖, 褚海燕 (2021). 小麦相关微生物的野外采样与样品保存. Bio-101 e2003668. doi: 10.21769/BioProtoc.2003668. | |
[24] |
Morano KA, Grant CM, Moye-Rowley WS (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157-1195.
DOI PMID |
[25] | Murty MG (1983). Nitrogen fixation (acetylene reduction) in the phyllosphere of some economically important plants. Plant Soil 73, 151-153. |
[26] | Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97, 30-39. |
[27] |
Rastogi G, Coaker GL, Leveau JHJ (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348, 1-10.
DOI PMID |
[28] |
Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010). The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12, 2885-2893.
DOI PMID |
[29] | Ren GD, Zhu CW, Alam MS, Tokida T, Sakai H, Nakamura H, Usui Y, Zhu JG, Hasegawa T, Jia ZJ (2015). Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392, 27-44. |
[30] | Rogers HJ (2017). Leaf senescence. Encycl Appl Plant Sci (Second Ed) 1, 308-314. |
[31] | Song H, Feng BL, Gao XL, Gao JF, Wang PK, Chai Y, Zhang PP (2010). Leaf senescence and reactive oxygen metabolism in different adzuki bean cultivars (lines). Acta Agron Sin 36, 347-353. (in Chinese) |
宋慧, 冯佰利, 高小丽, 高金锋, 王鹏科, 柴岩, 张盼盼 (2010). 不同小豆品种(系)叶片衰老与活性氧代谢. 作物学报 36, 347-353.
DOI |
|
[32] | Song Y, Chen HH, Cui X, Lu ZF, Liao SP, Zhang YY, Li XK, Cong RH, Ren T, Lu JW (2024). Potassium nutrient status-mediated leaf growth of oilseed rape (Brassica napus) and its effect on phyllosphere microorganism. Chin Bull Bot 59, 54-65. (in Chinese) |
宋毅, 陈航航, 崔鑫, 陆志峰, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍 (2024). 钾营养状况介导的油菜叶片生长及其对叶际微生物的影响. 植物学报 59, 54-65.
DOI |
|
[33] | Su P, Tan XQ, Li CG, Zhang DY, Cheng J, Zhang SB, Zhou XG, Yan QP, Peng J, Zhang Z, Liu Y, Lu XY (2017). Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microb Biotechnol 10, 612-624. |
[34] | Su P, Zhang DY, Zhang Z, Chen A, Cheng JE, Zeng J, Tan SY, Dai JP, Liu Y (2021). Dissection on the agronomical functions of photosynthetic bacteria. Chin J Biol Control 37, 30-37. (in Chinese) |
苏品, 张德咏, 张卓, 陈昂, 程菊娥, 曾军, 谭石勇, 戴建平, 刘勇 (2021). 光合细菌的农用微生物功能解读. 中国生物防治学报 37, 30-37.
DOI |
|
[35] | Tong SY, Song FB, Xu HW (2009). Differences of morphological senescence of leaves in various maize varieties during mature period of seed. Acta Agric Boreali-Sin 24, 11-15. (in Chinese) |
童淑媛, 宋凤斌, 徐洪文 (2009). 不同品种玉米籽粒成熟期间叶片形态衰老的差异. 华北农学报 24, 11-15.
DOI |
|
[36] | Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151, 59-66. |
[37] |
Vorholt JA (2012). Microbial life in the phyllosphere. Nat Rev Microbiol 10, 828-840.
DOI PMID |
[38] | Wang HZ, Zhao HL, Feng YX, Jiang L, Ning DK, Xie LY, Lin ED (2014). Response of soluble substances content in flag leaves during late growth stage and plant productivity of rice to elevated CO2 in North China. Acta Agron Sin 40, 320-328. (in Chinese) |
王惠贞, 赵洪亮, 冯永祥, 姜乐, 宁大可, 谢立勇, 林而达 (2014). 北方水稻生育后期剑叶可溶性物质含量及植株生产力对CO2浓度增高的响应. 作物学报 40, 320-328.
DOI |
|
[39] | Wang P (2015). Regulation of Leaf Senescence by Exogenous Melatonin and Functional Analysis of Related Autophagy Genes in Malus. PhD dissertation. Yangling: Northwest A&F University. pp. 16-23. (in Chinese) |
王平 (2015). 外源褪黑素对苹果叶片衰老的调控及相关自噬基因的功能分析. 博士论文. 杨凌: 西北农林科技大学. pp. 16-23. | |
[40] |
Wang YJ, Lü YJ, Liu HT, Bian SF, Wang LC (2019). Integrated management of high-yielding and high nutrient efficient spring maize in Northeast China. Sci Agric Sin 52, 3533-3535. (in Chinese)
DOI |
王永军, 吕艳杰, 刘慧涛, 边少锋, 王立春 (2019). 东北春玉米高产与养分高效综合管理. 中国农业科学 52, 3533-3535.
DOI |
|
[41] | Xiong C, He JZ, Zhang LM (2021). DNA extraction, amplification and source-tracking analysis for plant microbiomes. Bio-101 e2003695. doi: 10.21769/BioProtoc.2003695. (in Chinese) |
熊超, 贺纪正, 张丽梅 (2021). 植物微生物组DNA提取扩增及溯源分析. Bio-101 e2003695. doi: 10.21769/Bio-Protoc.2003695. | |
[42] |
Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, Meng GZ, Liu SY, Wang JT, Wu CF, Ge AH, Zhang LM (2021). Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9, 171.
DOI PMID |
[43] | Yan L, Zhang YZ, Qing Y, Fang ZR, Lai XJ (2020). Community rhythms of rhizosphere microbiome during the whole life cycle of potato. Acta Microbiol Sin 60, 246-260. (in Chinese) |
颜朗, 张义正, 清源, 方志荣, 赖先军 (2020). 马铃薯全生育期内根际微生物组变化规律. 微生物学报 60, 246-260. | |
[44] | Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010). Diversity and activity of PAH- degrading bacteria in the phyllosphere of ornamental plants. Microb Ecol 59, 357-368. |
[45] |
Zhang JY, Zhang N, Liu YX, Zhang XN, Hu B, Qin Y, Xu HR, Wang H, Guo XX, Qian JM, Wang W, Zhang PF, Jin T, Chu CC, Bai Y (2018). Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61, 613-621.
DOI PMID |
[46] | Zhang K, Li Z, Zheng Y, Ma HX, Liu MH, Ding HJ, Wang Y, Liu L, Xia XC (2020). Biodiversity of culturable moderate halophilic bacteria of rock salt in Yexian county, Henan province. Microbiol China 47, 3987-3997. (in Chinese) |
张科, 李臻, 郑瑶, 麻红星, 刘梦含, 丁慧杰, 王瑜, 刘丽, 夏西超 (2020). 河南叶县岩盐可培养中度嗜盐菌的多样性. 微生物学通报 47, 3987-3997. | |
[47] | Zhang ZL, Qu WJ (2003). The Experimental Guide for Plant Physiology, 3rd edn. Beijing: Higher Education Press. pp. 67-159. (in Chinese) |
张志良, 瞿伟菁 (2003). 植物生理学实验指导(第3版). 北京: 高等教育出版社. pp. 67-159. | |
[48] | Zhao GS, Zhang DY, Liu Y, Su P (2018). Application prospect of photosynthetic bacteria in inducing plant system resistance. Guizhou Agric Sci 46(11), 53-56. (in Chinese) |
赵国盛, 张德咏, 刘勇, 苏品 (2018). 光合细菌在植物诱导系统抗性中的应用前景. 贵州农业科学 46(11), 53-56. | |
[49] |
Zhou M, Zhang JJ, Luo Y (2023). The mechanism, current status and prospects of microbial fertilizers. Chin Agric Sci Bull 39(33), 68-75. (in Chinese)
DOI |
周萌, 张嘉俊, 罗洋 (2023). 微生物肥料的作用机理、现状及展望. 中国农学通报 39 (33), 68-75.
DOI |
[1] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[2] | 王立龙 冯静 苏娜 刘新平 潘成臣 李玉强. 2005-2015年科尔沁沙地典型农田生态系统长期监测样地的玉米收获期性状和产量数据集[J]. 植物生态学报, 2025, 49(典型生态系统数据集): 0-0. |
[3] | 李华亮, 张明军, 张熙斌, 谭荣, 李诗川, 冯尔辉, 林雪云, 陈珉, 颜文博, 曾治高. 海南东寨港国家级自然保护区两栖类群落组成及影响因素[J]. 生物多样性, 2025, 33(2): 24350-. |
[4] | 王涛, 冯敬磊, 张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J]. 植物学报, 2024, 59(6): 963-977. |
[5] | 杜庆国, 李文学. lncRNA调控玉米生长发育和非生物胁迫研究进展[J]. 植物学报, 2024, 59(6): 950-962. |
[6] | 王子阳, 刘升学, 杨志蕊, 秦峰. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 883-902. |
[7] | 李园, 范开建, 安泰, 李聪, 蒋俊霞, 牛皓, 曾伟伟, 衡燕芳, 李虎, 付俊杰, 李慧慧, 黎亮. 玉米自然群体自交系农艺性状的多环境全基因组预测初探[J]. 植物学报, 2024, 59(6): 1041-1053. |
[8] | 张强, 赵振宇, 李平华. 基因编辑技术在玉米中的研究进展[J]. 植物学报, 2024, 59(6): 978-998. |
[9] | 吴锁伟, 安学丽, 万向元. 玉米雄性不育机理及其在工程核不育制种中的应用[J]. 植物学报, 2024, 59(6): 932-949. |
[10] | 郑名敏, 黄强, 张鹏, 刘孝伟, 赵卓凡, 易洪杨, 荣廷昭, 曹墨菊. 玉米细胞质雄性不育及育性恢复研究进展[J]. 植物学报, 2024, 59(6): 999-1006. |
[11] | 杨娟, 赵月磊, 陈晓远, 王宝宝, 王海洋. 玉米开花期调控机理及育种应用[J]. 植物学报, 2024, 59(6): 912-931. |
[12] | 闫恒宇, 李朝霞, 李玉斌. 高温对玉米生长的影响及中国耐高温玉米筛选研究进展[J]. 植物学报, 2024, 59(6): 1007-1023. |
[13] | 陈科宇, 邢森, 唐玉, 孙佳慧, 任世杰, 张静, 纪宝明. 不同草地类型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[14] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[15] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||