植物学报 ›› 2023, Vol. 58 ›› Issue (5): 677-681.DOI: 10.11983/CBB23131
• 热点评述 • 下一篇
收稿日期:
2023-09-18
接受日期:
2023-09-21
出版日期:
2023-09-01
发布日期:
2023-09-22
通讯作者:
*E-mail: yhwang@genetics.ac.cn
基金资助:
Wang Wenguang1, Wang Yonghong1,2,*()
Received:
2023-09-18
Accepted:
2023-09-21
Online:
2023-09-01
Published:
2023-09-22
Contact:
*E-mail: yhwang@genetics.ac.cn
摘要: 植物感受到重力刺激后可通过重力反应协调自身各器官的生长方向。在植物重力反应过程中, 重力感应和信号转导一直都是植物学领域关注的焦点。经典的“淀粉-平衡石”假说认为植物对重力的感应是通过淀粉体(富含淀粉的质体)沉降来实现。此外, 研究发现LAZY蛋白通过调控生长素的不对称分布参与植物重力反应。然而, 淀粉体沉降引发的重力信号转导及其与LAZY蛋白之间协作的分子机制仍不清楚。近期, 清华大学陈浩东研究团队发现重力刺激能够诱导拟南芥(Arabidopsis thaliana) MKK5-MPK3激酶途径, 进而对LAZY蛋白进行磷酸化, LAZY蛋白的磷酸化增强其与淀粉体表面TOC蛋白的互作, 促进LAZY蛋白在淀粉体表面富集。淀粉体沉降引导LAZY蛋白在新的底侧质膜极性再定位。该研究深入解析了植物重力信号转导的分子机制, 建立了植物重力感应与LAZY蛋白介导的生长素不对称分布之间的联系, 是植物向重力性研究领域的重大突破。
王文广, 王永红. 百年假说终获解析: 穿梭的LAZY蛋白“唤醒”植物对重力的感应. 植物学报, 2023, 58(5): 677-681.
Wang Wenguang, Wang Yonghong. Century-old Hypothesis Finally Revealed: the Shuttling LAZY Proteins “Awaken” Gravity Sensing in Planta. Chinese Bulletin of Botany, 2023, 58(5): 677-681.
图1 拟南芥根尖的向重力弯曲以及重力刺激后柱细胞中LAZY4-GFP的荧光分布(图片由陈浩东研究员提供) (A) 将拟南芥LAZY4-GFP/lazy234幼苗在竖直放置的MS培养基上生长4天(持续白光), 然后旋转90o到水平方向进行重力刺激, 重力刺激6小时的根尖表现出明显的向重力弯曲生长(bar=5 mm); (B), (C) 将部分竖直生长的幼苗转移到含有10 μmol?L-1 CHX (蛋白合成抑制剂)的MS培养基上, 并且旋转90o到水平位置进行重力刺激约0.5小时。用共聚焦显微镜采集荧光图片。红色箭头指示淀粉体的位置。白色箭头指示根尖柱细胞中, 下侧细胞膜上与淀粉体邻近的位置有明显的LAZY4-GFP蛋白富集。标有G的箭头表示重力方向。Bars=10 μm
Figure 1 Gravitropism of Arabidopsis root tip and the fluorescence of LAZY4-GFP in the columella cells under gravistimulation (photos provided by Prof. Haodong Chen) (A) Seedlings of LAZY4-GFP/lazy234 were grown vertically on MS plates under white light for 4 days, and then reoriented 90o to the horizontal position for gravistimulation, the root tip showed obvious gravitropic bending after 6 h gravistimulation (bar=5 mm); (B), (C) Some of the vertically growing seedlings were transferred to MS plates with 10 μmol?L-1 CHX (protein synthesis inhibitor) to inhibit protein synthesis, and reoriented 90o to the horizontal position for gravistimulation for around 0.5 h. Fluorescence images were acquired using a confocal microscope. Red arrowheads indicate the amyloplasts. White arrowheads indicate the accumulated signal of LAZY4-GFP on the lower side of plasma membrane adjacent to the amyloplasts in root tip columella cells. Arrows labeled G indicate the direction of gravity. Bars=10 μm
[1] | Andrès C, Agne B, Kessler F (2010). The TOC complex: preprotein gateway to the chloroplast. Biochim Biophys Acta Bioenerg 1803, 715-723. |
[2] |
Cai YY, Huang LZ, Song YQ, Yuan YD, Xu S, Wang XP, Liang Y, Zhou J, Liu GF, Li JY, Wang WG, Wang YH (2023). LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol J 21, 1217-1228.
DOI PMID |
[3] |
Chen JY, Yu RB, Li N, Deng ZG, Zhang XX, Zhao YR, Qu CF, Yuan YF, Pan ZX, Zhou YY, Li KL, Wang JJ, Chen ZR, Wang XY, Wang XL, He SN, Dong J, Deng XW, Chen HD (2023). Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 186, 4788-4802.
DOI URL |
[4] |
Chen RJ, Rosen E, Masson PH (1999). Gravitropism in higher plants. Plant Physiol 120, 343-350.
DOI PMID |
[5] |
Dong ZB, Jiang C, Chen XY, Zhang T, Ding L, Song WB, Luo HB, Lai JS, Chen HB, Liu RY, Zhang XL, Jin WW (2013). Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163, 1306-1322.
DOI PMID |
[6] |
Firn RD, Digby J (1997). Solving the puzzle of gravitropism—has a lost piece been found? Planta 203, 159-163.
PMID |
[7] |
Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998). Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14, 425-430.
DOI PMID |
[8] |
Huang LZ, Wang WG, Zhang N, Cai YY, Liang Y, Meng XB, Yuan YD, Li JY, Wu DX, Wang YH (2021). LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol 231, 1073-1087.
DOI URL |
[9] |
Kubis S, Patel R, Combe J, Beédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Riéos G, Koncz C, Jarvis P (2004). Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16, 2059-2077.
DOI URL |
[10] |
Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17, 402-410.
DOI |
[11] |
Li YF, Deng ZG, Kamisugi Y, Chen ZR, Wang JJ, Han X, Wei YX, He H, Terzaghi W, Cove DJ, Cuming AC, Chen HD (2021). A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nat Commun 12, 4470.
DOI |
[12] |
Morita MT, Tasaka M (2004). Gravity sensing and signaling. Curr Opin Plant Biol 7, 712-718.
PMID |
[13] |
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa HY, Toyota M, Higaki T, Morita MT (2023). Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 381, 1006-1010.
DOI PMID |
[14] |
Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B, Zou JT (2000). The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol 122, 1193-1199.
PMID |
[15] |
Stanga JP, Boonsirichai K, Sedbrook JC, Otegui MS, Masson PH (2009). A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol 149, 1896-1905.
DOI PMID |
[16] |
Strohm AK, Baldwin KL, Masson PH (2012). Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci 3, 274.
DOI PMID |
[17] | Strohm AK, Barrett-Wilt GA, Masson PH (2014). A functional TOC complex contributes to gravity signal transduction in Arabidopsis. Front Plant Sci 5, 148. |
[18] |
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT (2017). The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29, 1984-1999.
DOI URL |
[19] |
Volkmann D, Baluska F (2006). Gravity: one of the driving forces for evolution. Protoplasma 229, 143-148.
PMID |
[20] |
Wang WG, Gao HB, Liang Y, Li JY, Wang YH (2022). Molecular basis underlying rice tiller angle: current progress and future perspectives. Mol Plant 15, 125-137.
DOI URL |
[21] |
Wang XY, Yu RB, Wang JJ, Lin ZC, Han X, Deng ZG, Fan LM, He H, Deng XW, Chen HD (2020). The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls. Cell Rep 31, 107529.
DOI URL |
[22] | Went FW, Thimann KV (1937). Phytohormones. New York: The macmillan company. |
[23] |
Yang PY, Wen QM, Yu RB, Han X, Deng XW, Chen HD (2020). Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. Proc Natl Acad Sci USA 117, 18840-18848.
DOI URL |
[24] |
Yoshihara T, Iino M (2007). Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1- dependent and -independent gravity signaling pathways. Plant Cell Physiol 48, 678-688.
DOI PMID |
[25] |
Yoshihara T, Spalding EP (2017). LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol 175, 959-969.
DOI PMID |
[26] |
Yu TS, Lue WL, Wang SM, Chen J (2000). Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123, 319-326.
DOI PMID |
[1] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[2] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
[3] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[4] | 温兴, 晋莲, 郭红卫. 甜蜜的相遇—营养与激素信号协同调节植物生长的新机制[J]. 植物学报, 2021, 56(2): 138-141. |
[5] | 朱丹,曹汉威,李媛,任东涛. 植物蛋白磷酸化的检测方法[J]. 植物学报, 2020, 55(1): 76-82. |
[6] | 张静,侯岁稳. 蛋白质翻译后修饰在ABA信号转导中的作用[J]. 植物学报, 2019, 54(3): 300-315. |
[7] | 刘雅琼,侯岁稳. 蛋白磷酸化修饰在植物-病原微生物互作中的作用研究进展[J]. 植物学报, 2019, 54(2): 168-184. |
[8] | 段志坤, 秦晓惠, 朱晓红, 宋纯鹏. 解析植物冷信号转导途径: 植物如何感知低温[J]. 植物学报, 2018, 53(2): 149-153. |
[9] | 曹文杰, 李贵生. 生长素输出载体PIN蛋白的质膜定位机制[J]. 植物学报, 2016, 51(2): 265-273. |
[10] | 张曦, 林金星, 单晓昳. 拟南芥无机氮素转运蛋白及其磷酸化调控研究进展[J]. 植物学报, 2016, 51(1): 120-129. |
[11] | 岳晶, 管利萍, 孟思远, 张静, 侯岁稳. 光色素信号通路中磷酸化修饰研究进展[J]. 植物学报, 2015, 50(2): 241-254. |
[12] | 赖辉煌 王宏斌 王金发. PTP 及其在植物MAPK 途径中的作用[J]. 植物学报, 2007, 24(05): 677-685. |
[13] | 杨洪强 接玉玲 李林光. 脱落酸信号转导研究进展[J]. 植物学报, 2001, 18(04): 427-435. |
[14] | 路荣昭 刘斌 张正东. 发菜藻胆体分离和光谱特性的研究[J]. 植物学报, 1990, 7(04): 27-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||