植物学报 ›› 2023, Vol. 58 ›› Issue (5): 682-686.DOI: 10.11983/CBB23126
收稿日期:
2023-09-12
接受日期:
2023-09-13
出版日期:
2023-09-01
发布日期:
2023-09-21
通讯作者:
*E-mail: xinxf@sippe.ac.cn
基金资助:
Received:
2023-09-12
Accepted:
2023-09-13
Online:
2023-09-01
Published:
2023-09-21
Contact:
*E-mail: xinxf@sippe.ac.cn
摘要: 蚜虫(aphids)及其携带的病毒是全球农作物生产过程中最具破坏性的病虫害之一。植物一旦被蚜虫侵染, 会产生并释放挥发性有机化合物(VOCs), 进而通过空气传播至周围植物, 激活邻近植物对昆虫和病毒的抗性, 称为气传性免疫(AD)。而对于植物如何产生挥发性信号分子以及邻近植物如何感知并激活抗病虫的机制尚不清楚。近期, 清华大学刘玉乐研究团队在植物间通讯介导邻近植物抗虫和抗病毒研究方面取得了新突破, 他们揭示了一条由水杨酸甲酯(MeSA)-水杨酸结合蛋白SABP2-转录因子NAC2-水杨酸羧基甲基转移酶SAMT1组成的信号通路介导邻近植物抗虫和抗病毒能力。该研究还发现由蚜虫传播的一些病毒编码蛋白能够通过与NAC2转录因子互作促进NAC2的出核和降解, 从而破坏植物间的信号交流以促进蚜虫及病毒的侵染。该研究全面阐释了蚜虫与其传播的病毒间共同进化的新的互惠关系, 填补了植物抗病虫、特别是气传性免疫领域的空白, 同时为培育抗虫、抗病毒作物提供了新思路及潜在基因。
袁民航, 辛秀芳. 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析. 植物学报, 2023, 58(5): 682-686.
Yuan Minhang, Xin Xiufang. Study Uncovers a New Signaling Circuit Mediating Airborne Defense of Plants Against Aphids and Viruses. Chinese Bulletin of Botany, 2023, 58(5): 682-686.
图1 植物间通讯介导邻近植物抗虫、抗病毒模式图(图片由刘玉乐教授提供) 当受到蚜虫侵害时, 植物会产生大量挥发性水杨酸甲酯(MeSA), 邻近的植物感知到这些挥发性MeSA后会激活自身对蚜虫和病毒的抗性。当植物受到携带病毒蚜虫的侵害时, 蚜虫传播的病毒能抑制植物在蚜虫侵害时产生的挥发性MeSA, 从而抑制MeSA介导的植物气传性免疫, 促进蚜虫繁殖和病毒传播。黄色圆点代表病毒。
Figure 1 A model of interplant communication mediating airborne defense against aphids and viruses (photo provided by Prof. Yule Liu) When plants are attacked by aphids, they produce a large amount of volatile methyl salicylate (MeSA). These MeSA can be sensed by neighboring plants to elicit plant resistance against aphids and viruses. However, when plants are attacked by aphids carrying viruses, some aphid-transmitted viruses can use virulence proteins to suppress the production of volatile MeSA in plants during aphid infestation. As a result, MeSA-mediated plant airborne defense is suppressed, leading to an enhanced aphid survival, infestation and viral transmission. The yellow dots indicate virus.
[1] |
Arimura GL, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512-515.
DOI |
[2] |
Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013). Underg-round signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16, 835-843.
DOI PMID |
[3] |
Baldwin IT, Kessler A, Halitschke R (2002). Volatile sig-naling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 5, 351-354.
PMID |
[4] |
Casteel CL, Yang CL, Nanduri AC, De Jong HN, Whitham SA, Jander G (2014). The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77, 653-663.
DOI URL |
[5] |
Dudareva N, Raguso RA, Wang J, Ross JR, Pichersky E (1998). Floral scent production in Clarkia breweri. III. Enzy-matic synthesis and emission of benzenoid esters. Plant Physiol 116, 599-604.
PMID |
[6] |
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004). Airborne signals prime plants against insect her-bivore attack. Proc Natl Acad Sci USA 101, 1781-1785.
DOI PMID |
[7] |
Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102, 1773-1778.
PMID |
[8] | Gong Q, Wang YJ, He LF, Huang F, Zhang DF, Wang Y, Wei X, Han M, Deng HT, Luo L, Cui F, Hong YG, Liu YL (2023). Molecular basis of methyl salicylate-mediated plant airborne defense. Nature https://www.nature.com/articles/-s41586-41023-06533-41583. |
[9] | Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng XY, Chen TY, Qian LC, Liu N, Wang YJ, Han SJ, Cheng JX, Qi YJ, Hong YG, Liu YL (2017). Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6, e23897. |
[10] |
Ismayil A, Yang M, Haxim Y, Wang YJ, Li JL, Han L, Wang Y, Zheng XY, Wei X, Nagalakshmi U, Hong YG, Hanley-Bowdoin L, Liu YL (2020). Cotton leaf curl Mul-tan virus betaC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyce-raldehyde-3-phosphate dehydrogenases. Plant Cell 32, 1124-1135.
DOI URL |
[11] | Jia Q, Liu N, Xie K, Dai YW, Han SJ, Zhao XJ, Qian LC, Wang YJ, Zhao JP, Gorovits R, Xie DX, Hong YG, Liu YL (2016). CLCuMuB betaC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12, e1005668. |
[12] |
Karban R, Yang LH, Edwards KF (2014). Volatile communication between plants that affects herbivory: a meta- analysis. Ecol Lett 17, 44-52.
DOI URL |
[13] |
Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun YW, Qian HM, Tee C, Van Loon JJA, Dicke M, Chua NH, Liu SS, Ye J (2014). Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26, 4991-5008.
DOI URL |
[14] |
Loreto F, D'Auria S (2022). How do plants sense volatiles sent by other plants? Trends Plant Sci 27, 29-38.
DOI URL |
[15] |
Loreto F, Dicke M, Schnitzler JP, Turlings TCJ (2014). Plant volatiles and the environment. Plant Cell Environ 37, 1905-1908.
DOI URL |
[16] | Mallinger RE, Hogg DB, Gratton C (2011). Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroe-cosystems. J Econ Entomol 104, 115-124. |
[17] |
Moreira X, Nell CS, Katsanis A, Rasmann S, Mooney KA (2018). Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae). New Phytol 220, 703-713.
DOI URL |
[18] |
Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR (2021). Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front Plant Sci 12, 710268.
DOI URL |
[19] |
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.
DOI URL |
[20] |
Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze JP, Poessel JL, Sauge MH (2010). Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol 30, 1320-1334.
DOI URL |
[21] |
Wang YJ, Gong Q, Wu YY, Huang F, Ismayil A, Zhang DF, Li HG, Gu HQ, Ludman M, Fátyol K, Qi YJ, Yoshioka K, Hanley-Bowdoin L, Hong YG, Liu YL (2021). A calmodu-lin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29, 1393-1406.
DOI URL |
[22] | Yang M, Ismayil A, Jiang ZH, Wang Y, Zheng XY, Yan LM, Hong YG, Li DW, Liu YL (2022). A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 41, e108713. |
[23] | Zhao PZ, Yao XM, Cai CX, Li R, Du J, Sun YW, Wang MY, Zou Z, Wang QM, Kliebenstein DJ, Liu SS, Fang RX, Ye J (2019). Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci Adv 5, eaav9801. |
[1] | 胡丹玲, 孙永伟. 病毒介导的植物基因组编辑技术研究进展[J]. 植物学报, 2024, 59(3): 452-462. |
[2] | 刘裕强, 万建民. 寄主监控昆虫唾液蛋白平衡植物抗性与生长发育[J]. 植物学报, 2023, 58(3): 353-355. |
[3] | 吕善武, 张昌伟, 侯喜林, 邓书林. 白菜类作物抗TuMV研究进展[J]. 植物学报, 2023, 58(2): 335-346. |
[4] | 蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平. 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用[J]. 生物多样性, 2023, 31(12): 23183-. |
[5] | 陶洁, 李本强, 程靖华, 石迎, 刘佩红, 何桂霞, 徐伟杰, 刘惠莉. 基于宏病毒组学技术挖掘猪腹泻粪便的病毒群落组成[J]. 生物多样性, 2023, 31(11): 23170-. |
[6] | 卢聪聪, 刘倩, 黄晓磊. 三种蚜虫的线粒体基因组数据[J]. 生物多样性, 2022, 30(7): 22204-. |
[7] | 何雨龙, 王佳歌, 赵珊珊, 高锦, 常英英, 赵喜亭, 聂碧华, 杨清香, 张江利, 李明军. 马铃薯Y病毒RPA-CRISPR/Cas12a检测技术体系的建立与应用[J]. 植物学报, 2022, 57(3): 308-319. |
[8] | 王晓敏, 李洪磊, 王林, 周鹏泽, 白圣懿, 李国花, 郑福顺, 陶小荣, 程国新, 高艳明, 李建设. 银川番茄斑萎病毒的分子鉴定[J]. 植物学报, 2021, 56(6): 715-721. |
[9] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
[10] | 唐霜, 沈姝, 史君明, 方耀辉, 王华林, 胡志红, 邓菲. 布尼亚病毒目新分类概述[J]. 生物多样性, 2018, 26(9): 1004-1015. |
[11] | 关正君, 鲁顺保, 霍艳林, 郝浩永, 曹建斌, 魏伟, 刘标. 转Bt基因抗虫作物对非靶标害虫的影响[J]. 生物多样性, 2018, 26(6): 636-644. |
[12] | 李荣改, 陆艳梅, 王月影, 王宝强, 宋炜, 张文英. 玉米粗缩病的分子研究新进展[J]. 植物学报, 2017, 52(3): 375-387. |
[13] | 蒋林惠, 罗琌, 肖正高, 李大明, 陈小云, 刘满强, 胡锋. 长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献[J]. 生物多样性, 2016, 24(8): 907-915. |
[14] | 李秀璋, 姚祥, 李春杰, 南志标. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634. |
[15] | 方琦, 董家红, 郑宽瑜, 张仲凯. 番茄环纹斑点病毒与马铃薯Y病毒复合侵染烟草的细胞病理特征[J]. 植物学报, 2014, 49(6): 704-709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||