植物学报 ›› 2021, Vol. 56 ›› Issue (2): 138-141.DOI: 10.11983/CBB21040 cstr: 32102.14.CBB21040
收稿日期:
2021-02-24
接受日期:
2021-02-26
出版日期:
2021-03-01
发布日期:
2021-03-17
通讯作者:
郭红卫
作者简介:
*E-mail: guohw@sustech.edu.cn基金资助:
Xing Wen1,2, Lian Jin1,2, Hongwei Guo1,2,*()
Received:
2021-02-24
Accepted:
2021-02-26
Online:
2021-03-01
Published:
2021-03-17
Contact:
Hongwei Guo
摘要: 为应对持续不断的环境压力和逆境胁迫, 植物需要整合内部和外部信息来调整自身的生长发育, 以适应环境。其中, 可溶性糖不仅是基础能量和营养代谢的必需分子, 也是参与植物生长发育和应对胁迫的信号分子。然而, 植物整合糖信号, 平衡营养代谢和胁迫应答的分子机制尚不清楚。最近, 福建农林大学熊延团队发现, 居于植物营养感受通路中心地位的TOR激酶能够直接磷酸化乙烯信号核心组分EIN2蛋白, 形成1个葡萄糖-TOR-EIN2的营养感受和调控轴心。植物通过不同的蛋白激酶(TOR和CTR1)精确调控EIN2不同位点的磷酸化, 从而使EIN2成为葡萄糖信号和乙烯信号的交叉中心, 精巧地调节植物的生长发育。
温兴, 晋莲, 郭红卫. 甜蜜的相遇—营养与激素信号协同调节植物生长的新机制. 植物学报, 2021, 56(2): 138-141.
Xing Wen, Lian Jin, Hongwei Guo. A Sweet Meet—New Mechanism on Nutrient and Hormone Regulation of Plant Growth. Chinese Bulletin of Botany, 2021, 56(2): 138-141.
图1 营养与乙烯信号协同调节植物生长的机制 在营养丰富或未进行乙烯处理时, 蛋白激酶CTR1和TOR均能直接与EIN2发生相互作用, 分别对多个氨基酸进行磷酸化修饰。当采用乙烯处理时, 受体失活, CTR1被抑制, EIN2第645和924位丝氨酸(S645和S924)磷酸化水平下调, 导致EIN2的C端被切割, 一部分入核, 另一部分在细胞质中促进P-body的形成, 最终稳定转录因子EIN3/EIL1, 激活下游基因表达(Li et al. 2015; Hao et al. 2017)。当营养缺乏时, TOR受到抑制, EIN2第657位苏氨酸(T657)磷酸化水平下降, 导致EIN2全长蛋白进入细胞核。如果发生在黑暗中, 会造成EIN3/EIL1蛋白水平上调, 激活下游ERF基因表达, 抑制下胚轴伸长; 如果发生在光下, 会造成E2Fa基因下调, 最终抑制根分生组织细胞的增殖。实线代表已建立直接互作, 虚线代表可能间接互作或尚待研究, 箭头代表促进作用, T型箭头代表抑制作用。
Figure 1 The mechanism of coordinated regulation of plant growth by nutrition and ethylene signaling Protein kinases CTR1 and TOR can interact and phosphorylate EIN2, respectively, in nutrition-rich medium or ethylene- free environment. When treated with ethylene, inactivation of the receptors leads to the suppression of CTR1 and the phosphorylation levels at two serine residues (S645 and S924) of EIN2 are decreased. EIN2 is therefore cleaved and the C terminus translocates into the nucleus and/or forms P-body in the cytoplasm. Consequently, the master transcription factors EIN3/EIL1 are stabilized and the downstream gene expression is activated (Li et al. 2015; Hao et al. 2017). When nutrition deficiency occurs, TOR is inhibited and the phosphorylation level of a threonine (T657) of EIN2 is decreased, followed by the nuclear shuttling of the full-length EIN2 protein. If it occurs in darkness, EIN3/EIL1 proteins would be promoted, thus to activate the expression of downstream ERF genes and to inhibit hypocotyl elongation. Alternatively, if in light, E2Fa gene expression would be down- regulated, thus to inhibit root meristem cell proliferation. Unbroken lines indicate established interactions, broken lines indicate indirect or hypothetical interactions, arrows indicate stimulatory interactions, bar-headed lines indicate inhibitory interactions.
[1] | Chen RQ, Binder BM, Garrett WM, Tucker ML, Chang C, Cooper B (2011). Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7,2637-2650. |
[2] | Depaepe T, Hendrix S, van Rensburg HCJ Van den Ende W, Cuypers A, Van Der Straeten D (2021). At the crossroads of survival and death: the reactive oxygen species-ethylene-sugar triad and the unfolded protein response. Trends Plant Sci 26,338-351. |
[3] | Fu LW, Liu YL, Qin GC, Wu P, Zi HL, Xu ZT, Zhao XD, Wang Y, Li YX, Yang SH, Peng C, Wong CCL, Yoo SD, Zuo ZC, Liu RY, Cho YH, Xiong Y (2021). The TOR- EIN2 axis mediates nuclear signaling to modulate plant growth. Nature 591,288-292. |
[4] | Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bäuerlein FJB, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grünewald K (2015). Structural basis of vesicle formation at the inner nuclear membrane. Cell 163,1692-1701. |
[5] | Hao DD, Sun XZ, Ma B, Zhang JS, Guo HW (2017). Ethylene. In: Li JY, Li CY, Smith SM, eds. Hormone Metabolism and Signaling in Plants. London: Academic Press. pp.203-241. |
[6] | Ingargiola C, Duarte GT, Robaglia C, Leprince AS, Meyer C (2020). The plant target of rapamycin: a conductor of nutrition and metabolism in photosynthetic organisms. Genes (Basel) 11, 1285. |
[7] | Ju CL, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C, (2012). CTR1 phos- phorylates the central regulator EIN 2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109, 19486-19491. |
[8] | Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC (2007). Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA 104,7241-7246. |
[9] | Li WY, Ma MD, Feng Y, Li HJ, Wang YC, Ma YT, Li MZ, An FY, Guo HW (2015). EIN2-directed translational regu- lation of ethylene signaling in Arabidopsis. Cell 163, 670- 683. |
[10] | Pandey BK, Huang GQ, Bhosale R, Hartman S, Sturrock CJ, Jose L, Martin OC, Martin M, Voesenek LACJ, Ljung K, Lynch JP, Brown KM, Whalley WR, Mooney SJ, Zhang DB, Bennett MJ (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science 371,276-280. |
[11] | Qiao H, Shen ZX, Huang SSC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethy- lene gas. Science 338,390-393. |
[12] | Shen X, Li YL, Pan Y, Zhong SW (2016). Activation of HLS1 by mechanical stress via ethylene-stabilized EIN3 is crucial for seedling soil emergence. Front Plant Sci 7,1571. |
[13] | Wang PC, Zhao Y, Li ZP, Hsu CC, Liu X, Fu LW, Hou YJ, Du YY, Xie SJ, Zhang CG, Gao JH, Cao MJ, Huang XS, Zhu YF, Tang K, Wang XG, Tao WA, Xiong Y, Zhu JK (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69,100-112. |
[14] | Wen X, Zhang CL, Ji YS, Zhao Q, He WR, An FY, Jiang LW, Guo HW (2012). Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22,1613-1616. |
[15] | Wu Y, Shi L, Li LW, Fu LW, Liu YL, Xiong Y, Sheen J (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J Exp Bot 70,2227-2238. |
[16] | Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J (2013). Glucose-TOR signaling reprograms the transcriptome and activates meristems. Nature 496,181-186. |
[17] | Yuan XB, Xu P, Yu YD, Xiong Y (2020). Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. Proc Natl Acad Sci USA 117,32223-32225. |
[18] | Zhong SW, Shi H, Xue C, Wei N, Guo HW, Deng XW (2014). Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc Natl Acad Sci USA 111,3913-3920. |
[19] | Zhu FG, Deng J, Chen H, Liu P, Zheng LH, Ye QY, Li R, Brault M, Wen JQ, Frugier F, Dong JL, Wang T (2020). A cep peptide receptor-like kinase regulates auxin bio- synthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell 32,2855-2877. |
[1] | 姚瑞枫, 谢道昕. 水稻独脚金内酯信号感知的激活和终止[J]. 植物学报, 2024, 59(6): 873-877. |
[2] | 李红菊, 杨维才. 微肽大用: 种子脱水调控新机制[J]. 植物学报, 2024, 59(6): 869-872. |
[3] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[4] | 廖人玉, 王佳伟. 从损伤到重生——REF1小肽如何激发植物的内在再生潜能[J]. 植物学报, 2024, 59(3): 347-350. |
[5] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[6] | 王文广, 王永红. 百年假说终获解析: 穿梭的LAZY蛋白“唤醒”植物对重力的感应[J]. 植物学报, 2023, 58(5): 677-681. |
[7] | 孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. |
[8] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
[9] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[10] | 朱丹,曹汉威,李媛,任东涛. 植物蛋白磷酸化的检测方法[J]. 植物学报, 2020, 55(1): 76-82. |
[11] | 单婷婷,陈晓梅,郭顺星,田丽霞,严林,王欣. 鞘脂在植物-真菌互作中的分子调控机制研究进展[J]. 植物学报, 2019, 54(3): 396-404. |
[12] | 张静,侯岁稳. 蛋白质翻译后修饰在ABA信号转导中的作用[J]. 植物学报, 2019, 54(3): 300-315. |
[13] | 刘雅琼,侯岁稳. 蛋白磷酸化修饰在植物-病原微生物互作中的作用研究进展[J]. 植物学报, 2019, 54(2): 168-184. |
[14] | 段志坤, 秦晓惠, 朱晓红, 宋纯鹏. 解析植物冷信号转导途径: 植物如何感知低温[J]. 植物学报, 2018, 53(2): 149-153. |
[15] | 施怡婷, 杨淑华. 中国科学家在乙烯信号转导领域取得突破性进展[J]. 植物学报, 2016, 51(3): 287-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||