植物学报 ›› 2018, Vol. 53 ›› Issue (2): 149-153.DOI: 10.11983/CBB18039 cstr: 32102.14.CBB18039
• 热点评 • 下一篇
收稿日期:
2018-02-03
接受日期:
2018-03-08
出版日期:
2018-03-01
发布日期:
2018-08-10
通讯作者:
宋纯鹏
Duan Zhikun, Qin Xiaohui, Zhu Xiaohong, Song Chunpeng*()
Received:
2018-02-03
Accepted:
2018-03-08
Online:
2018-03-01
Published:
2018-08-10
Contact:
Song Chunpeng
摘要: 低温胁迫(冷害和冻害)严重影响植物的生长发育和地理分布, 是制约作物产量和品质的主要因素之一。在自然界, 植物通过感知低温信号并启动一系列响应机制来抵御冷冻伤害。MAP蛋白激酶家族在植物响应逆境胁迫信号过程中发挥重要作用, 但其是否参与冷冻胁迫信号传递仍不清楚。最近, 朱健康、杨淑华和种康研究团队先后报道了拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)通过MAPK级联反应途径参与冷冻胁迫应答反应, 通过磷酸化ICE1来调控其稳定性, 并阐明了ICE1提高植物抗冷冻能力的分子机制。他们的研究完善了ICE1介导的低温应答网络, 是植物低温应答研究领域的重要突破, 并为未来的作物分子设计育种提供了强有力的理论依据。
段志坤, 秦晓惠, 朱晓红, 宋纯鹏. 解析植物冷信号转导途径: 植物如何感知低温. 植物学报, 2018, 53(2): 149-153.
Duan Zhikun, Qin Xiaohui, Zhu Xiaohong, Song Chunpeng. Making Sense of Cold Signaling: ICE is Cold or not Cold?. Chinese Bulletin of Botany, 2018, 53(2): 149-153.
图1 MAP激酶级联反应调控拟南芥和水稻低温应答的工作模型低温刺激诱导细胞质钙信号的变化。在拟南芥中, 作为钙调蛋白的类受体激酶CRLK1和CRLK2被快速激活, 启动MEKK1-MKK2- MPK4信号级联, 抑制了MPK3/6活性, 正调控植物抗冷反应。另一个信号通路MKK4/5-MPK3/6同样被冷胁迫快速诱导, 在MKK5存在的情况下, MPK3/6被激活, 磷酸化ICE1, 促进其降解, CBFs转录水平下降, 负调控植物抗冷反应。MPK3/6诱导的ICE1降解, 与HOS1泛素化降解过程无关。同时, OST1也可磷酸化ICE1, 但其磷酸化作用抑制HOS1对ICE1的泛素化降解, 从而起到正调控作用。在水稻中, 冷胁迫诱导OsMAPK3激活, 而后磷酸化OsICE1。同时, OsMAPK3抑制OsHOS1和OsICE1的结合, 进而抑制OsICE1的降解, 维持了OsICE1的稳定。被磷酸化的OsICE1激活OsTPP1的转录, 促进海藻糖的累积, 增强水稻耐冷能力。(箭头代表激活, 短横线代表抑制, 虚线代表机制尚不清楚。红色线代表拟南芥内信号通路, 黑色线代表水稻内信号通路)
Figure 1 A proposed working model shows the roles of MAP kinase cascades during the cold response in Arabidopsis and riceLow temperature induces changes in cytoplasmic calcium signaling. In Arabidopsis, calcium/calmodulin regulated receptor-like kinase 1 and 2 (CRLK1 and CRLK2) are activated by cold signal, and then initiate MEKK1-MKK2-MPK4 cascade, which suppresses cold-induced activation of MPK3/6, thus positively regulating cold tolerance. MKK4/5-MPK3/6 cascades can also be rapidly activated in cold stress in parallel with MEKK1-MKK2-MPK4. Constitutively activated MPK3/6 by MKK5 phosphorylate ICE1 to promote degradation of ICE1, which decreases the transcriptional activity of CBFs, thus negatively regulating cold to- lerance in Arabidopsis. OST1 also phosphorylates and affects the stability of ICE1, and positively regulate cold tolerance. In rice, cold signal induces the activation of OsMAPK3 that phosphorylates the OsICE1 and inhibits OsICE1 degradation by interrupting the interaction of OsHOS1 and OsICE1 to maintain the stability of OsICE1. Phosphorylated OsICE1 activates the transcription of OsTPP1 to promote the accumulation of trehalose, and enhances the cold tolerance of rice. (Arrows represent activation, and bars represent inhibition, dotted lines represent unknown mechanisms. Red lines represent signal pathways in Arabidopsis, and black lines represent signal pathways in rice)
[1] | 刘静妍, 施怡婷, 杨淑华 (2017). CBF: 平衡植物低温应答与生长发育的关键. 植物学报 52, 689-698. |
[2] | Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003). ICE1: a regulator of cold- induced transcriptome and freezing tolerance in Arabidopsis.Genes Dev 17, 1043-1054. |
[3] | Ding YL, Li H, Zhang XY, Xie Q, Gong ZZ, Yang SH (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis.Dev Cell 32, 278-289. |
[4] | Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.Proc Natl Acad Sci USA 103, 8281-8286. |
[5] | Furuya T, Matsuoka D, Nanmori T (2013). Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. J Plant Res 126, 833-840. |
[6] | Jia YX, Ding YL, Shi YT, Zhang XY, Gong ZZ, Yang SH (2016). The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212, 345-353. |
[7] | Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K (2012). The bHLH Rac Immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity.Plant Cell Physiol 53, 740-754. |
[8] | Li B, Jiang S, Yu X, Cheng C, Chen SX, Cheng YB, Yuan JS, Jiang DH, He P, Shan LB (2015). Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity.Plant Cell 27, 839-856. |
[9] | Li H, Ding YL, Shi YT, Zhang XY, Zhang SQ, Gong ZZ, Yang SH (2017). MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis.Dev Cell 43, 630-642. |
[10] | Li HW, Zang BS, Deng XW, Wang XP (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234, 1007-1018. |
[11] | Lourenco T, Sapeta H, Figueiredo DD, Rodrigues M, Cordeiro A, Abreu IA, Saibo NJ, Oliveira MM (2013). Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol Biol 83, 351-363. |
[12] | Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HX, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221. |
[13] | Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/ DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell 19, 1403-1414. |
[14] | Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini ML (2015). Expression of trehalose-6- phosphate phosphatase in maize ears improves yield in well-watered and drought conditions.Nat Biotechnol 33, 862-869. |
[15] | Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis.Mol Cell 15, 141-152. |
[16] | Wingler A (2002). The function of trehalose biosynthesis in plants. Phytochemistry 60, 437-440. |
[17] | Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010). A calcium/calmodulin-regulated member of the receptor- like kinase family confers cold tolerance in plants.J Biol Chem 285, 7119-7126. |
[18] | Zhang ZY, Li JH, Li F, Liu HH, Yang WS, Chong K, Xu YY (2017). OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and en- hances rice chilling tolerance.Dev Cell 43, 731-743. |
[19] | Zhao C, Wang P, Si T, Hsu CC, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao WA, Zhu JK (2017). MAP kinase cascades regulate the cold response by modulating ICE1 protein stability.Dev Cell 43, 618-629. |
[20] | Zhao CZ, Zhang ZJ, Xie SJ, Si T, Li YY, Zhu JK (2016). Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis.Plant Phy- siol 171, 2744-2759. |
[1] | 姚瑞枫, 谢道昕. 水稻独脚金内酯信号感知的激活和终止[J]. 植物学报, 2024, 59(6): 873-877. |
[2] | 周俭民. 收放自如的明星战车[J]. 植物学报, 2024, 59(3): 343-346. |
[3] | 王文广, 王永红. 百年假说终获解析: 穿梭的LAZY蛋白“唤醒”植物对重力的感应[J]. 植物学报, 2023, 58(5): 677-681. |
[4] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
[5] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[6] | 温兴, 晋莲, 郭红卫. 甜蜜的相遇—营养与激素信号协同调节植物生长的新机制[J]. 植物学报, 2021, 56(2): 138-141. |
[7] | 黄荣峰, 徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021, 56(1): 6-9. |
[8] | 朱丹,曹汉威,李媛,任东涛. 植物蛋白磷酸化的检测方法[J]. 植物学报, 2020, 55(1): 76-82. |
[9] | 张静,侯岁稳. 蛋白质翻译后修饰在ABA信号转导中的作用[J]. 植物学报, 2019, 54(3): 300-315. |
[10] | 刘雅琼,侯岁稳. 蛋白磷酸化修饰在植物-病原微生物互作中的作用研究进展[J]. 植物学报, 2019, 54(2): 168-184. |
[11] | 曹文杰, 李贵生. 生长素输出载体PIN蛋白的质膜定位机制[J]. 植物学报, 2016, 51(2): 265-273. |
[12] | 张曦, 林金星, 单晓昳. 拟南芥无机氮素转运蛋白及其磷酸化调控研究进展[J]. 植物学报, 2016, 51(1): 120-129. |
[13] | 岳晶, 管利萍, 孟思远, 张静, 侯岁稳. 光色素信号通路中磷酸化修饰研究进展[J]. 植物学报, 2015, 50(2): 241-254. |
[14] | 赖辉煌 王宏斌 王金发. PTP 及其在植物MAPK 途径中的作用[J]. 植物学报, 2007, 24(05): 677-685. |
[15] | 杨洪强 接玉玲 李林光. 脱落酸信号转导研究进展[J]. 植物学报, 2001, 18(04): 427-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||