植物学报 ›› 2023, Vol. 58 ›› Issue (3): 499-509.DOI: 10.11983/CBB22001
• 专题论坛 • 上一篇
任晓童1, 张冉冉1, 魏绍巍1, 罗晓峰1, 徐佳慧2, 舒凯1()
收稿日期:
2022-01-01
接受日期:
2022-08-25
出版日期:
2023-05-01
发布日期:
2023-05-17
通讯作者:
*E-mail: kshu@nwpu.edu.cn
基金资助:
Xiaotong Ren1, Ranran Zhang1, Shaowei Wei1, Xiaofeng Luo1, Jiahui Xu2, Kai Shu1()
Received:
2022-01-01
Accepted:
2022-08-25
Online:
2023-05-01
Published:
2023-05-17
Contact:
*E-mail: kshu@nwpu.edu.cn
摘要: 种子际是围绕在种子表面, 受到种子萌发影响而使微生物活性增强的狭窄土壤区域。萌发期间的种子和微生物相互影响, 对种子萌发和随后的幼苗生长具有促进或抑制作用; 同时也通过垂直传播参与植物根际和叶际微生物群落构建, 影响植物后续发育及生物/非生物胁迫响应。尽管种子际对于植物生长发育影响很大, 但由于种子萌发持续时间短、种子际的空间范围小且微生物量较小, 种子际研究要比根际和叶际更为复杂。通过基因组学和多组学联合分析等方法对种子际微生物群落组成进行深入探究, 有助于理解植物与土壤生态系统的相互作用和生态过程。该文综述了种子际微生物对种子生物学的影响、种子际微生物与根际和叶际微生物的关系以及相关研究方法, 并展望了未来的研究方向。
任晓童, 张冉冉, 魏绍巍, 罗晓峰, 徐佳慧, 舒凯. 种子际微生物研究展望. 植物学报, 2023, 58(3): 499-509.
Xiaotong Ren, Ranran Zhang, Shaowei Wei, Xiaofeng Luo, Jiahui Xu, Kai Shu. Research Progress of Spermosphere Microorganisms. Chinese Bulletin of Botany, 2023, 58(3): 499-509.
寄主植物 | 种子际微生物 | 功能与作用机制 | 参考文献 |
---|---|---|---|
种子萌发相关 | |||
苜蓿 | 泛菌属(Pantoea)和芽孢杆菌属(Bacillus)等 | 盐胁迫下通过促进生长素合成、抵抗真菌以及提高渗透胁迫耐受性促进种子萌发 | Dai et al., |
高羊茅、鸭茅和新麦草 | 巴西固氮螺菌(Azospirillum brasilense) | 通过降低丙二醛含量和提高抗氧化酶活性修复种子老化损伤, 提高老化种子萌发率 | 柳旭, |
番茄 | 米甲基杆菌(Methylobacterium oryzae (CBMB20)) | 通过促进植物激素合成、氮固定、磷酸盐增溶和铁载体产生等途径促进种子萌发和植株生长 | Chanratana et al., |
拟南芥 | 铜绿假单胞菌(Pseudomonas aeruginosa) | 通过释放可触发萌发抑制的生物化合物AMB (L-2- amino-4-methoxy-trans-3-butenoic acid)抑制种子萌发, 增强胁迫耐受性 | Chahtane et al., |
小麦和禾本科牧草 | 头孢霉菌属(Acremonium)、胶枝菌属(Gliocladium)和瓶霉菌属(Phialophora) | 通过与镰刀菌(Fusarium culmorum)拮抗性竞争种子际生态位抑制镰刀菌生长, 降低镰刀菌枯萎病发病率 | Slykhuis, |
小麦 | 假单胞菌属(Pseudomonas) | 在种子萌发和幼苗早期生长阶段分解过氧化氢, 调节植物细胞外氧化还原环境 | Gerna et al., |
番茄 | 哈茨曼氏菌(Trichoderma harzianum) | 减少受胁迫植物中活性氧的积累, 保护植物免受氧化损伤, 增强幼苗活力 | Mastouri et al., |
复活蕨 | 芽孢杆菌属(Bacillus)等 | 通过促进植物激素合成、氮固定、次生代谢物分泌和诱导植物系统抗性促进幼苗生长和植物发育 | Jackson et al., |
玉米 | 贝莱斯芽孢杆菌(B. velezensis) | 帮助植物抵抗轮枝镰刀菌(F. verticillioides), 促进玉米种子萌发和幼苗生长 | Pal et al., |
花生 | 芽孢杆菌属(Bacillus) | 协助植物产生特定磷酸酶, 将有机磷转化为无机磷, 提高花生种子萌发期的耐盐能力 | Xu et al., |
豌豆和四季豆 | 芽孢杆菌属(Bacillus) | 分泌抗真菌化合物, 帮助植物抵抗灰葡萄孢菌(Botrytis cinerea)和腐霉属(Pythium)真菌的侵染 | Walker et al., |
表1 主要种子际微生物的功能与作用机制
Table 1 Functions and mechanisms of spermosphere microorganisms involved in seed biology
寄主植物 | 种子际微生物 | 功能与作用机制 | 参考文献 |
---|---|---|---|
种子萌发相关 | |||
苜蓿 | 泛菌属(Pantoea)和芽孢杆菌属(Bacillus)等 | 盐胁迫下通过促进生长素合成、抵抗真菌以及提高渗透胁迫耐受性促进种子萌发 | Dai et al., |
高羊茅、鸭茅和新麦草 | 巴西固氮螺菌(Azospirillum brasilense) | 通过降低丙二醛含量和提高抗氧化酶活性修复种子老化损伤, 提高老化种子萌发率 | 柳旭, |
番茄 | 米甲基杆菌(Methylobacterium oryzae (CBMB20)) | 通过促进植物激素合成、氮固定、磷酸盐增溶和铁载体产生等途径促进种子萌发和植株生长 | Chanratana et al., |
拟南芥 | 铜绿假单胞菌(Pseudomonas aeruginosa) | 通过释放可触发萌发抑制的生物化合物AMB (L-2- amino-4-methoxy-trans-3-butenoic acid)抑制种子萌发, 增强胁迫耐受性 | Chahtane et al., |
小麦和禾本科牧草 | 头孢霉菌属(Acremonium)、胶枝菌属(Gliocladium)和瓶霉菌属(Phialophora) | 通过与镰刀菌(Fusarium culmorum)拮抗性竞争种子际生态位抑制镰刀菌生长, 降低镰刀菌枯萎病发病率 | Slykhuis, |
小麦 | 假单胞菌属(Pseudomonas) | 在种子萌发和幼苗早期生长阶段分解过氧化氢, 调节植物细胞外氧化还原环境 | Gerna et al., |
番茄 | 哈茨曼氏菌(Trichoderma harzianum) | 减少受胁迫植物中活性氧的积累, 保护植物免受氧化损伤, 增强幼苗活力 | Mastouri et al., |
复活蕨 | 芽孢杆菌属(Bacillus)等 | 通过促进植物激素合成、氮固定、次生代谢物分泌和诱导植物系统抗性促进幼苗生长和植物发育 | Jackson et al., |
玉米 | 贝莱斯芽孢杆菌(B. velezensis) | 帮助植物抵抗轮枝镰刀菌(F. verticillioides), 促进玉米种子萌发和幼苗生长 | Pal et al., |
花生 | 芽孢杆菌属(Bacillus) | 协助植物产生特定磷酸酶, 将有机磷转化为无机磷, 提高花生种子萌发期的耐盐能力 | Xu et al., |
豌豆和四季豆 | 芽孢杆菌属(Bacillus) | 分泌抗真菌化合物, 帮助植物抵抗灰葡萄孢菌(Botrytis cinerea)和腐霉属(Pythium)真菌的侵染 | Walker et al., |
方法 | 原理 | 特点 | 局限性 | 参考文献 |
---|---|---|---|---|
分子生物学分析技术 | ||||
G+C含量测定 | 不同物种所携带的鸟嘌呤(G)+胞嘧啶(C)含量不同, 通过研究DNA中G+C含量的差异, 可以评估微生物群落的多样性 | 原位检测; 具有特异性, 不受菌龄和外界环境的影响; 简便、快速、灵敏且成本低 | 单独推断物种存在或物种丰度不准确, 应与表型特征或其它分类依据结合起来分析 | Griffiths et al., |
磷脂脂肪酸分析(PLFA) | 磷脂是活性微生物生物量的重要指标; 特定的脂肪酸表示特定的生物种群 | 易提取 | 不能精确到物种水平; 严重依赖特征脂肪酸 | Haack et al., |
变性/温度梯度凝胶电泳(DGGE/TGGE) | 利用DNA分子在具有DNA变性梯度或温度梯度的聚丙烯酰胺凝胶中迁移率的差异分离DNA | 可靠、重复性好、快速且成本低 | 只能检测出环境样本中1%-2%的代表优势种的微生物种群 | Macnaughton et al., |
末端限制性片段长度多态性(T-RFLP) | 用限制性内切酶切割带有荧光标记引物的PCR扩增产物, 由于不同微生物物种存在核苷酸序列差异, 会产生不同长度的末端限制性片段 | 结果可靠; 可用于比较不同样本之间的关系和检测微生物群落的时空变化 | 只能检测到一定数量的优势物种; 受限于通用引物的选择; 受限制性内切酶种类的影响 | Marsh, |
稳定同位素探测(SIP) | 追踪特定底物中重稳定同位素与微生物同化底物相关的系统发育信息生物标记物(PLFA、DNA、RNA和蛋白质)的结合 | 将功能与微生物群落结构联系起来, 可用于研究植物与微生物的相互作用 | 可用性有限、成本高、低通量 | Uhlik et al., |
荧光原位杂交(FISH) | 通过荧光标记的寡核苷酸探针与特异的互补核酸序列杂交, 利用荧光显微镜直接观察特定微生物的分布与数量 | 原位无损检测, 敏感度高 | 环境样品自发荧光; 寡核苷酸探针特异性差 | Ahmad et al., |
高通量分析技术 | ||||
多组学联合分析 | 通过基因组学、转录组学、蛋白质组学、代谢组学和具有原位环境特征的微生物组学研究各个层次的信息 | 将功能、活性和相互作用联系起来; 高通量 | 常用的二代测序错误率高; 遗传数据库不完备 | Abram, |
表2 研究种子际微生物群落结构的方法
Table 2 Methods for studying the structure of spermosphere microbial communities
方法 | 原理 | 特点 | 局限性 | 参考文献 |
---|---|---|---|---|
分子生物学分析技术 | ||||
G+C含量测定 | 不同物种所携带的鸟嘌呤(G)+胞嘧啶(C)含量不同, 通过研究DNA中G+C含量的差异, 可以评估微生物群落的多样性 | 原位检测; 具有特异性, 不受菌龄和外界环境的影响; 简便、快速、灵敏且成本低 | 单独推断物种存在或物种丰度不准确, 应与表型特征或其它分类依据结合起来分析 | Griffiths et al., |
磷脂脂肪酸分析(PLFA) | 磷脂是活性微生物生物量的重要指标; 特定的脂肪酸表示特定的生物种群 | 易提取 | 不能精确到物种水平; 严重依赖特征脂肪酸 | Haack et al., |
变性/温度梯度凝胶电泳(DGGE/TGGE) | 利用DNA分子在具有DNA变性梯度或温度梯度的聚丙烯酰胺凝胶中迁移率的差异分离DNA | 可靠、重复性好、快速且成本低 | 只能检测出环境样本中1%-2%的代表优势种的微生物种群 | Macnaughton et al., |
末端限制性片段长度多态性(T-RFLP) | 用限制性内切酶切割带有荧光标记引物的PCR扩增产物, 由于不同微生物物种存在核苷酸序列差异, 会产生不同长度的末端限制性片段 | 结果可靠; 可用于比较不同样本之间的关系和检测微生物群落的时空变化 | 只能检测到一定数量的优势物种; 受限于通用引物的选择; 受限制性内切酶种类的影响 | Marsh, |
稳定同位素探测(SIP) | 追踪特定底物中重稳定同位素与微生物同化底物相关的系统发育信息生物标记物(PLFA、DNA、RNA和蛋白质)的结合 | 将功能与微生物群落结构联系起来, 可用于研究植物与微生物的相互作用 | 可用性有限、成本高、低通量 | Uhlik et al., |
荧光原位杂交(FISH) | 通过荧光标记的寡核苷酸探针与特异的互补核酸序列杂交, 利用荧光显微镜直接观察特定微生物的分布与数量 | 原位无损检测, 敏感度高 | 环境样品自发荧光; 寡核苷酸探针特异性差 | Ahmad et al., |
高通量分析技术 | ||||
多组学联合分析 | 通过基因组学、转录组学、蛋白质组学、代谢组学和具有原位环境特征的微生物组学研究各个层次的信息 | 将功能、活性和相互作用联系起来; 高通量 | 常用的二代测序错误率高; 遗传数据库不完备 | Abram, |
[1] | 柳旭 (2018). 植物根际促生细菌与种子引发技术对老化种子萌发和幼苗生长的影响. 硕士论文. 杨凌: 西北农林科技大学. pp. 18-22. |
[2] |
王孝林, 王二涛 (2019). 根际微生物促进水稻氮利用的机制. 植物学报 54, 285-287.
DOI |
[3] |
Ab Rahman SFS, Singh E, Pieterse CMJ, Schenk PM (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267, 102-111.
DOI PMID |
[4] |
Abdelfattah A, Wisniewski M, Schena L, Tack AJM (2021). Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ Microbiol 23, 2199-2214.
DOI PMID |
[5] |
Abram F (2015). Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13, 24-32.
DOI URL |
[6] |
Adam E, Bernhart M, Müller H, Winkler J, Berg G (2018). The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422, 35-49.
DOI URL |
[7] | Ahmad F, Husain FM, Ahmad I (2011). Rhizosphere and root colonization by bacterial inoculants and their monitoring methods:a critical area in PGPR research. In: Ahmad I, Ahmad F, Pichtel J, eds. Microbes and Microbial Technology: Agricultural and Environmental Applications. New York: Springer. pp. 363-391. |
[8] |
Andrews JH, Harris RF (2000). The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38, 145-180.
DOI PMID |
[9] |
Aziz U, Rehmani MS, Wang L, Luo XF, Xian BS, Wei SW, Wang GD, Shu K (2021). Toward a molecular understanding of rhizosphere, phyllosphere, and spermosphere interactions in plant growth and stress response. Crit Rev Plant Sci 40, 479-500.
DOI URL |
[10] | Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364-369. |
[11] |
Behjati S, Tarpey PS (2013). What is next generation sequencing? Arch Dis Child Educ Pract Ed 98, 236-238.
DOI PMID |
[12] | Bodenhausen N, Horton MW, Bergelson J (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8, e56329. |
[13] |
Bulgarelli D, Schlaeppi K, Spaepen S, Schulze-Lefert P (2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
DOI PMID |
[14] | Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15, e2001793. |
[15] |
Buyer JS, Roberts DP, Russek-Cohen E (1999). Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45, 138-144.
DOI URL |
[16] | Chahtane H, Füller TN, Allard PM, Marcourt L, Queiroz EF, Shanmugabalaji V, Falquet J, Wolfender JL, Lopez- Molina L (2018). The plant pathogen Pseudomonas aeruginosa triggers a DELLA-dependent seed germination arrest in Arabidopsis. eLife 7, e37082. |
[17] |
Chanratana M, Han GH, Joe MM, Choudhury AR, Sundaram S, Halim A, Sa T (2018). Evaluation of chitosan and alginate immobilized Methylobacterium oryzae CBMB20 on tomato plant growth. Arch Agron Soil Sci 64, 1489-1502.
DOI URL |
[18] |
Chee-Sanford JC, Williams II MM, Davis AS, Sims GK (2006). Do microorganisms influence seed-bank dynamics? Weed Sci 54, 575-587.
DOI URL |
[19] |
da Costa DS, Bonassa N, da Luz Coelho Novembre AD (2013). Incidence of storage fungi and hydropriming on soybean seeds. J Seed Sci 35, 35-41.
DOI URL |
[20] |
Dai Y, Li XY, Wang Y, Li CX, He Y, Lin HH, Wang T, Ma XR (2020). The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages. Microb Biotechnol 13, 1461-1476.
DOI URL |
[21] |
Dakora FD, Phillips DA (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245, 35-47.
DOI URL |
[22] |
de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020). Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270-274.
DOI PMID |
[23] |
Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010). Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157, 361-379.
DOI URL |
[24] |
dos Santos RM, Escobar Diaz PA, Bentes Lobo LL, Rigobelo EC (2020). Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4, 136.
DOI URL |
[25] |
Finkelstein R, Reeves W, Ariizumi T, Steber C (2008). Molecular aspects of seed dormancy. Annu Rev Plant Biol 59, 387-415.
DOI PMID |
[26] |
Gerna D, Roach T, Mitter B, Stöggl W, Kranner I (2020). Hydrogen peroxide metabolism in interkingdom interaction between bacteria and wheat seeds and seedlings. Mol Plant Microbe Interact 33, 336-348.
DOI URL |
[27] |
Gopal M, Gupta A (2016). Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7, 1971.
DOI PMID |
[28] |
Green SJ, Inbar E, Michel FC Jr, Hadar Y, Minz D (2006). Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72, 3975-3983.
DOI URL |
[29] | Griffiths BS, Díaz-Raviña M, Ritz K, McNicol JW, Ebblewhite N, Bååth E (1997). Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24, 103-112. |
[30] |
Gundel PE, Rudgers JA, Ghersa CM (2011). Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 120, 1121-1128.
DOI URL |
[31] |
Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994). Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60, 2483-2493.
DOI URL |
[32] |
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79, 293-320.
DOI URL |
[33] |
Hassani MA, Durán P, Hacquard S (2018). Microbial interactions within the plant holobiont. Microbiome 6, 58.
DOI PMID |
[34] |
Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60, 579-598.
DOI URL |
[35] | Hiltner L (1904). Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung and brache. Arb Dtsch Landwirtsch Ges 98, 59-78. |
[36] |
Hirsch PR, Mauchline TH, Clark IM (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42, 878-887.
DOI URL |
[37] |
Jackson EF, Echlin HL, Jackson CR (2006). Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58, 236-246.
PMID |
[38] |
Janssen PH (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72, 1719-1728.
DOI URL |
[39] |
Johnston-Monje D, Gutiérrez JP, Lopez-Lavalle LAB (2021). Seed-transmitted bacteria and fungi dominate juvenile plant microbiomes. Front Microbiol 12, 737616.
DOI URL |
[40] |
Kageyama K, Nelson EB (2003). Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69, 1114-1120.
DOI URL |
[41] | Kalia A, Sharma SP, Devi S (2020). Effect of surface microbiome and osmo-conditioning on restoration of storage-induced losses of seed viability in muskmelon (Cucumis melo L.). J Agric Sci Technol 22, 221-233. |
[42] |
Khan N, Bano A, Ali S, Babar A (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90, 189-203.
DOI |
[43] |
Konstantinidis KT, Ramette A, Tiedje JM (2006). The bacterial species definition in the genomic era. Philos Trans Roy Soc B Biol Sci 361, 1929-1940.
DOI URL |
[44] |
Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8, 141.
DOI PMID |
[45] |
Last FT (1955). Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38, 221-239.
DOI URL |
[46] | Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017). Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82, 101-133. |
[47] |
Lin H, Liu CJ, Li B, Dong YB (2021). Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J Hazard Mater 402, 123829.
DOI URL |
[48] |
Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346, 146-154.
DOI PMID |
[49] |
Macnaughton SJ, Booth T, Embley TM, O’Donnell AG (1996). Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent- labeled oligonucleotide probes. J Microbiol Methods 26, 279-285.
DOI URL |
[50] |
Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4, 523-532.
DOI PMID |
[51] |
Marschner P, Crowley D, Rengel Z (2011). Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods. Soil Biol Biochem 43, 883-894.
DOI URL |
[52] |
Marsh TL (1999). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2, 323-327.
PMID |
[53] | Martinez-Rodriguez A, Macedo-Raygoza G, Huerta-Robles AX, Reyes-Sepulveda I, Lozano-Lopez J, García- Ochoa EY, Fierro-Kong L, Medeiros MHG, di Mascio P, White Jr JF, Beltran-Garcia MJ (2019). Agave seed endophytes:ecology and impacts on root architecture, nutrient acquisition, and cold stress tolerance. In: Verma SK, White Jr JF, eds. Seed Endophytes: Biology and Biotechnology. Cham: Springer. pp. 139-170. |
[54] |
Mastouri F, Björkman T, Harman GE (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100, 1213-1221.
DOI PMID |
[55] |
Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008). Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2, 379-392.
DOI PMID |
[56] |
Nelson EB (2004). Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42, 271-309.
PMID |
[57] |
Nelson EB (2018). The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7-34.
DOI |
[58] |
Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li DY, Manzoor I, Song FM (2021). Plant-microbiome crosstalk: dawning from composition and assembly of microbial community to improvement of disease resilience in plants. Int J Mol Sci 22, 6852.
DOI URL |
[59] |
Nusslein K, Tiedje JM (1999). Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65, 3622-3626.
DOI URL |
[60] |
Ofek M, Hadar Y, Minz D (2011). Colonization of cucumber seeds by bacteria during germination. Environ Microbiol 13, 2794-2807.
DOI PMID |
[61] |
Oracz K, Karpiński S (2016). Phytohormones signaling pathways and ROS involvement in seed germination. Front Plant Sci 7, 864.
DOI PMID |
[62] |
Pal G, Kumar K, Verma A, Verma SK (2022). Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol Res 255, 126926.
DOI URL |
[63] |
Puente ME, Li CY, Bashan Y (2009). Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66, 402-408.
DOI URL |
[64] | Ramadurai S, Moorthy A, Balasundaram U (2021). Metagenomic approach in relation to plant-microbe and microbe-microbe interactions. In: Pudake RN, Sahu BB, Kumari M, Sharma AK, eds. Omics Science for Rhizosphere Biology. Singapore: Springer. pp. 21-40. |
[65] | Ravichandran A, Thangavel K, Rangasamy A (2021). Maize spermosphere bacterial endophytes and their biotic and abiotic stress tolerance traits. Pharma Innovation 10, 47-53. |
[66] |
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015). Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53, 403-424.
DOI PMID |
[67] |
Remus-Emsermann MNP, Schlechter RO (2018). Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218, 1327-1333.
DOI PMID |
[68] |
Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210, 1033-1043.
DOI PMID |
[69] |
Rudi K, Zimonja M, Trosvik P, Naes T (2007). Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 120, 95-99.
PMID |
[70] |
Ruinen J (1956). Occurrence of beijerinckia species in the ‘phyllosphere’. Nature 177, 220-221.
DOI |
[71] | Sahadevan N, Radhakrishnan EK, Mathew J (2019). Mechanism of interaction of endophytic microbes with plants. In: Verma SK, White JF Jr, eds. Seed Endophytes: Biology and Biotechnology. Cham: Springer. pp. 237-257. |
[72] | Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112, E5013-E5020. |
[73] |
Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015). A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119, 1467-1481.
DOI PMID |
[74] |
Shade A, Jacques MA, Barret M (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37, 15-22.
DOI PMID |
[75] |
Shakir S, Zaidi SSEA, de Vries FT, Mansoor S (2021). Plant genetic networks shaping phyllosphere microbial community. Trends Genet 37, 306-316.
DOI PMID |
[76] |
Short GE, Lacy ML (1976). Carbohydrate exudation from pea seeds: effect of cultivar, seed age, seed color, and temperature. Phytopathology 66, 182-187.
DOI URL |
[77] |
Shu K, Liu XD, Xie Q, He ZH (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9, 34-45.
DOI PMID |
[78] |
Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY (2015). Dormancy and germination: how does the crop seed decide? Plant Biol 17, 1104-1112.
DOI URL |
[79] |
Singh JS, Pandey VC, Singh DP (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140, 339-353.
DOI URL |
[80] |
Slykhuis JT (1947). Studies on Fusarium culmorum blight of crested wheat and brome grass seedlings. Can J Res 25c, 155-180.
DOI URL |
[81] |
Stringlis IA, de Jonge R, Pieterse CMJ (2019). The age of coumarins in plant-microbe interactions. Plant Cell Physiol 60, 1405-1419.
DOI PMID |
[82] | Thevenot C, Thomas F (1983). Physiology of apple-embryo cotyledons in relation to dormancy. 1. Influence of germination conditions on their morphological development. Bull Soc Bot Fr Actual Bot 130, 89-100. |
[83] |
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31, 154-165.
DOI PMID |
[84] |
van de Peer Y, Chapelle S, De Wachter R (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24, 3381-3391.
PMID |
[85] |
van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018). The third revolution in sequencing technology. Trends Genet 34, 666-681.
DOI PMID |
[86] |
Vega A, Antonio O'Brien J, Gutiérrez RA (2019). Nitrate and hormonal signaling crosstalk for plant growth and development. Curr Opin Plant Biol 52, 155-163.
DOI PMID |
[87] | Verona O (1963). Interaction between germinating seeds and telluric microorganisms. Ann Inst Pasteur 105, 75-98. |
[88] |
Vorholt JA (2012). Microbial life in the phyllosphere. Nat Rev Microbiol 10, 828-840.
DOI PMID |
[89] |
Walker R, Powell AA, Seddon B (1998). Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J Appl Microbiol 84, 791-801.
PMID |
[90] |
Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiol 132, 44-51.
DOI PMID |
[91] | Watson AG (1966). Seasonal variation in the inoculum potentials of spermosphere fungi. New Z J Agric Res 9, 956-963. |
[92] |
Weitbrecht K, Müller K, Leubner-Metzger G (2011). First off the mark: early seed germination. J Exp Bot 62, 3289-3309.
DOI PMID |
[93] |
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S (2015). Recent progress in the use of 'omics technologies in brassicaceous vegetables. Front Plant Sci 6, 244.
DOI PMID |
[94] |
Xu Y, Zhang D, Dai LX, Ding H, Ci DW, Qin FF, Zhang GC, Zhang ZM (2020). Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. Int J Mol Sci 21, 2131.
DOI URL |
[95] |
Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017). Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8, 215.
DOI PMID |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 朱晓博, 董张, 祝梦瑾, 胡晋, 林程, 陈敏, 关亚静. 重要的种子储存物质长寿命mRNA[J]. 植物学报, 2024, 59(3): 355-372. |
[4] | 仲昭暄, 张冬瑞, 李璐, 苏颖, 王黛宁, 王泽冉, 刘洋, 常缨. 香鳞毛蕨dfr-miR160a和靶基因DfARF10的生物信息学及表达模式分析[J]. 植物学报, 2024, 59(1): 22-33. |
[5] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[6] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[7] | 许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰. 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023, 58(4): 622-637. |
[8] | 张嘉, 李启东, 李翠, 王庆海, 侯新村, 赵春桥, 李树和, 郭强. 植物MATE转运蛋白研究进展[J]. 植物学报, 2023, 58(3): 461-474. |
[9] | 迪力夏旦木·塔什买买提, 刘会良. 荒漠一年生植物异时萌发研究进展[J]. 植物生态学报, 2023, 47(12): 1611-1628. |
[10] | 李永光, 任辉, 张英杰, 李瑞宁, 艾昊, 黄先忠. 十字花科植物PEBP基因家族的分子进化[J]. 生物多样性, 2022, 30(6): 21545-. |
[11] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[12] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[13] | 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126. |
[14] | 胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月. 青篱柴通过促进亲和花粉生长而提高传粉精确性[J]. 生物多样性, 2021, 29(7): 887-896. |
[15] | 谢玲玲, 王金龙, 伍国强. 植物CBL-CIPK信号系统响应非生物胁迫的调控机制[J]. 植物学报, 2021, 56(5): 614-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||