植物学报 ›› 2024, Vol. 59 ›› Issue (1): 34-53.DOI: 10.11983/CBB23004

• 研究报告 • 上一篇    下一篇

棉属光敏色素PHY基因家族的全基因组鉴定与驯化选择分析

顾家琦1,2,, 朱福慧1,2,, 谢沛豪1,2, 孟庆营1,2, 郑颖2, 张献龙1,2, 袁道军1,2,3,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室, 武汉 430070
    2华中农业大学植物科学技术学院, 武汉 430070
    3新疆农业大学农学院, 乌鲁木齐 830052
  • 收稿日期:2023-01-02 接受日期:2023-07-08 出版日期:2024-01-01 发布日期:2023-07-21
  • 通讯作者: *E-mail: robert@mail.hzau.edu.cn
  • 作者简介:

    †共同第一作者

  • 基金资助:
    国家重点研发计划(2021YFF1000102);华中农业大学中央高校基本科研项目(2021ZKPY013)

Genome-wide Identification and Domestication Analysis of the Phytochrome PHY Gene Family in Gossypium

Jiaqi Gu1,2,, Fuhui Zhu1,2,, Peihao Xie1,2, Qingying Meng1,2, Ying Zheng2, Xianlong Zhang1,2, Daojun Yuan1,2,3,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
    2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
    3College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2023-01-02 Accepted:2023-07-08 Online:2024-01-01 Published:2023-07-21
  • Contact: *E-mail: robert@mail.hzau.edu.cn
  • About author:

    †These authors contributed equally to this paper

摘要: 光敏色素(PHY)作为植物体内重要的红光(R)和远红光(FR)受体, 在调节植物花期、提高作物产量以及调控植物抗逆性方面均具有重要作用。鉴定棉花PHY基因, 探究其驯化和改良的遗传调控网络, 发掘棉花光敏色素关键基因, 为早熟棉花品种的从头驯化和育种提供新见解。以5个拟南芥(Arabidopsis thaliana)光敏色素基因作为种子序列, 利用生物信息学方法, 对不同棉种中的PHY基因进行全基因组系统鉴定。系统发育分析表明, 锦葵科植物中的PHY基因包括PHYAPHYBPHYCPHYE四个亚家族。PHY基因在陆地棉(Gossypium hirsutum)不同群体间的驯化选择分析结果表明, PHY基因的驯化过程可分为早期驯化和后期遗传改良2个阶段。对陆地棉野生种和栽培品种在长、短日照下的转录组分析显示, GhPHYA1DtGhPHYB1Dt在长、短日照下的表达差异显著; 在长日照处理14小时后, 栽培品种GhPHYC1AtGHPHYE1At的表达量显著低于野生种。研究结果为进一步揭示棉花PHY基因的驯化选择和功能机制奠定了基础, 为棉花早熟新品种选育和从头驯化提供了理论依据。

关键词: 棉花, 驯化, 光敏色素, 基因家族

Abstract: Phytochrome is an important receptor for red and far-red light sensing in plants, and it plays a vital role in regulating the plant flowering period, improving crop yield potential and regulating plant stress resistance. Identification of PHY family genes in Gossypium, exploration of the patterns of inheritance and regulatory network of domestication and improvement, and identification of the key phytochrome genes in Gossypium, provides insights into the de novo domestication and breeding of early maturing Gossypium species. To identify the phytochrome genes of Gossypium, we used bioinformatics methods to analyze 5 phytochrome genes in Arabidopsis thaliana. Phylogenetic analysis showed that the PHY genes in Malvaceae species consisted of 4 subfamilies (PHYA, PHYB, PHYC and PHYE). Moreover, the domestication selection analysis of PHY genes among different populations of G. hirsutum showed that the domestication process of PHY genes could be divided into two stages: domestication and improvement. Furthermore, the gene expression of the PHY gene family was analyzed using leaf RNA-sequencing data obtained from wild and cultivar genotypes of G. hirsutum under short-day (SD) and long-day (LD) conditions. The results showed that the expression of GhPHYA1Dt and GhPHYB1Dt were significantly different between SD and LD conditions. After 14 hours of long-day treatment, the expression of GhPHYC1At and GHPHYE1At in the cultivar was significantly lower than that in wild species. These results lay a foundation for further study on domestication selection and functional mechanisms of Gossypium PHY genes and provide a theoretical basis for breeding new early maturing Gossypium varieties and de novo domestication.

Key words: cotton, domestication, phytochrome, gene family