植物学报 ›› 2022, Vol. 57 ›› Issue (6): 732-741.DOI: 10.11983/CBB22151
所属专题: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
收稿日期:
2022-07-14
接受日期:
2022-10-09
出版日期:
2022-11-01
发布日期:
2022-11-18
通讯作者:
金京波
作者简介:
*E-mail: jinjb@ibcas.ac.cn基金资助:
Jing Bo Jin1,3,*(), Chengzhi Liang2,3
Received:
2022-07-14
Accepted:
2022-10-09
Online:
2022-11-01
Published:
2022-11-18
Contact:
Jing Bo Jin
摘要: 相比于粮食作物, 饲草基因组学研究严重滞后, 限制了饲草重要农艺性状解析以及分子设计育种的进程。近年来, 随着对饲草需求的增加、测序成本的大幅降低以及测序和组装技术的快速发展, 许多重要饲草的基因组已被测序和分析。该文综述了豆科、禾本科和莎草科18种饲草的基因组学研究进展, 并展望了饲草基因组研究未来的方向。
金京波, 梁承志. 饲草基因组学研究进展. 植物学报, 2022, 57(6): 732-741.
Jing Bo Jin, Chengzhi Liang. Research Advances in Forage Grass Genomics. Chinese Bulletin of Botany, 2022, 57(6): 732-741.
物种 | 拉丁学名 | 科 | 倍性 | 基因组大小 | 重复元件占比(%) | 编码蛋白基因数目 | 生活型 |
---|---|---|---|---|---|---|---|
蒺藜苜蓿 | Medicago truncatula | 豆科 | 2n=2x=16 | 430 Mb | 43.94 | 44623 | 一年生 |
紫花苜蓿 | M. sativa | 豆科 | 2n=4x=32 | 816 Mb | 57 | 49165 | 多年生 |
蓝花苜蓿 | M. sativa spp. caerulea | 豆科 | 2n=2x=16 | 793.2 Mb | 55.55 | 47202 | 多年生 |
南苜蓿 | M. polymorpha | 豆科 | 2n=2x=14 | 457.53 Mb | 38.04 | 36087 | 一年生或二年生 |
花苜蓿 | M. ruthenica | 豆科 | 2n=2x=16 | 904.13 Mb | 57 | 45397 | 多年生 |
白花草木樨 | Melilotus albus | 豆科 | 2n=2x=16 | 1.04 Gb | 71.42 | 41910 | 二年生 |
甜高粱 | Sorghum dochna | 禾本科 | 2n=2x=20 | 730 Mb | 61 | 27640 | 一年生 |
燕麦 | Avena sativa | 禾本科 | 2n=6x=42 | 11.0 Gb | 64 | 80608 | 一年生 |
黑麦 | Secale cereale | 禾本科 | 2n=2x=14 | 7.74 Gb | 90.31 | 86991 | 一年生或越年生 |
黑麦草 | Lolium perenne | 禾本科 | 2n=2x=14 | 2.28 Gb | 81.6 | 38868 | 多年生 |
二倍体长穗偃麦草 | Thinopyrum elongatum | 禾本科 | 2n=2x=14 | 4.63 Gb | 81.29 | 44474 | 多年生 |
二倍体鸭茅 | Dactylis glomerata | 禾本科 | 2n=2x=14 | 1.84 Gb | 68.56 | 40088 | 多年生 |
象草 | Cenchrus purpureus | 禾本科 | 2n=4x=28 | 2.07 Gb | 66.29 | 77139 | 多年生 |
无芒隐子草 | Cleistogenes songorica | 禾本科 | 2n=4x=40 | 540.12 Mb | 40.74 | 54383 | 多年生 |
小花碱茅 | Puccinellia tenuiflora | 禾本科 | 2n=2x=14 | 1.50 Gb | 65.37 | 39725 | 多年生 |
芨芨草 | Achnatherum splendens | 禾本科 | 2n=2x=48 | 1.17 Gb | 62.37 | 57374 | 多年生 |
百喜草 | Paspalum notatum | 禾本科 | 2n=2x=20 | 541 Mb | 60.64 | 36511 | 多年生 |
柳枝稷 | Panicum virgatum | 禾本科 | 2n=4x=36 | 1.13 Gb | 56.9 | 80278 | 多年生 |
藏北嵩草 | Kobresia littledalei | 莎草科 | 2n=2x=58 | 373.85 Mb | 54.13 | 23136 | 多年生 |
表1 已测序饲草物种的基因组信息
Table 1 Genome information of the sequenced forage grass species
物种 | 拉丁学名 | 科 | 倍性 | 基因组大小 | 重复元件占比(%) | 编码蛋白基因数目 | 生活型 |
---|---|---|---|---|---|---|---|
蒺藜苜蓿 | Medicago truncatula | 豆科 | 2n=2x=16 | 430 Mb | 43.94 | 44623 | 一年生 |
紫花苜蓿 | M. sativa | 豆科 | 2n=4x=32 | 816 Mb | 57 | 49165 | 多年生 |
蓝花苜蓿 | M. sativa spp. caerulea | 豆科 | 2n=2x=16 | 793.2 Mb | 55.55 | 47202 | 多年生 |
南苜蓿 | M. polymorpha | 豆科 | 2n=2x=14 | 457.53 Mb | 38.04 | 36087 | 一年生或二年生 |
花苜蓿 | M. ruthenica | 豆科 | 2n=2x=16 | 904.13 Mb | 57 | 45397 | 多年生 |
白花草木樨 | Melilotus albus | 豆科 | 2n=2x=16 | 1.04 Gb | 71.42 | 41910 | 二年生 |
甜高粱 | Sorghum dochna | 禾本科 | 2n=2x=20 | 730 Mb | 61 | 27640 | 一年生 |
燕麦 | Avena sativa | 禾本科 | 2n=6x=42 | 11.0 Gb | 64 | 80608 | 一年生 |
黑麦 | Secale cereale | 禾本科 | 2n=2x=14 | 7.74 Gb | 90.31 | 86991 | 一年生或越年生 |
黑麦草 | Lolium perenne | 禾本科 | 2n=2x=14 | 2.28 Gb | 81.6 | 38868 | 多年生 |
二倍体长穗偃麦草 | Thinopyrum elongatum | 禾本科 | 2n=2x=14 | 4.63 Gb | 81.29 | 44474 | 多年生 |
二倍体鸭茅 | Dactylis glomerata | 禾本科 | 2n=2x=14 | 1.84 Gb | 68.56 | 40088 | 多年生 |
象草 | Cenchrus purpureus | 禾本科 | 2n=4x=28 | 2.07 Gb | 66.29 | 77139 | 多年生 |
无芒隐子草 | Cleistogenes songorica | 禾本科 | 2n=4x=40 | 540.12 Mb | 40.74 | 54383 | 多年生 |
小花碱茅 | Puccinellia tenuiflora | 禾本科 | 2n=2x=14 | 1.50 Gb | 65.37 | 39725 | 多年生 |
芨芨草 | Achnatherum splendens | 禾本科 | 2n=2x=48 | 1.17 Gb | 62.37 | 57374 | 多年生 |
百喜草 | Paspalum notatum | 禾本科 | 2n=2x=20 | 541 Mb | 60.64 | 36511 | 多年生 |
柳枝稷 | Panicum virgatum | 禾本科 | 2n=4x=36 | 1.13 Gb | 56.9 | 80278 | 多年生 |
藏北嵩草 | Kobresia littledalei | 莎草科 | 2n=2x=58 | 373.85 Mb | 54.13 | 23136 | 多年生 |
[1] | 陈志宏, 李新一, 洪军 (2018). 我国草种质资源的保护现状、存在问题及建议. 草业科学 35, 186-191. |
[2] |
谢华玲, 杨艳萍, 董瑜, 王台 (2021). 苜蓿国际发展态势分析. 植物学报 56, 740-750.
DOI |
[3] | Båga M, Bahrani H, Larsen J, Hackauf B, Graf RJ, Laroche A, Chibbar RN (2022). Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 12, 5793. |
[4] | Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015). A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84, 816-826. |
[5] | Can MY, Wei W, Zi HL, Bai M, Liu YF, Gao D, Tu D, Bao YH, Wang L, Chen SF, Zhao X, Qu GP (2020). Genome sequence of Kobresia littledalei, the first chromosome- level genome in the family Cyperaceae. Sci Data 7, 175. |
[6] |
Chen HT, Zeng Y, Yang YZ, Huang LL, Tang BL, Zhang H, Hao F, Liu W, Li YH, Liu YB, Zhang XS, Zhang R, Zhang YS, Li YX, Wang K, He H, Wang ZK, Fan GY, Yang H, Bao AK, Shang ZH, Chen JH, Wang W, Qiu Q (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11, 2494.
DOI PMID |
[7] |
Chen L, He F, Long RC, Zhang F, Li MN, Wang Z, Kang JM, Yang QC (2021). A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. J Integr Plant Biol 63, 1937-1951.
DOI |
[8] | Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu SQ, Flowers D, Luo F, Wang YS, Xia P, Barry K, Daum C, Lipzen A, Yoshinaga Y, Schmutz J, Saski C, Vermerris W, Kresovich S (2019). A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics 20, 420. |
[9] | Cui JW, Lu ZG, Wang TY, Chen G, Mostafa S, Ren HL, Liu SA, Fu CX, Wang L, Zhu YF, Lu JK, Chen X, Wei ZW, Jin B (2021). The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Hortic Res 8, 47. |
[10] | Fois M, Bellucci A, Malinowska M, Greve M, Ruud AK, Asp T (2022). Genome-wide association mapping of crown and brown rust resistance in perennial ryegrass. Genes (Basel) 13, 20. |
[11] | Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, Shimizu-Inatsugi R, Yates S, Shimizu KK, Frey JE, Studer B, Copetti D (2021). Ultralong oxford nanopore reads enable the development of a reference-grade pe-a)rennial ryegrass genome assembly. Genome Biol Evol 13, evab159. |
[12] | Guo R, Zhao L, Zhang KJ, Gao D, Yang CW (2020). Genome of extreme halophyte Puccinellia tenuiflora. BMC Genomics 21, 311. |
[13] | He F, Wei CX, Zhang YX, Long RC, Li MN, Wang Z, Yang QC, Kang JM, Chen L (2022). Genome-wide association analysis coupled with transcriptome analysis reveals candidate genes related to salt stress in alfalfa (Medicago sativa L.). Front Plant Sci 12, 826584. |
[14] |
Huang LK, Feng GY, Yan HD, Zhang ZR, Bushman BS, Wang JP, Bombarely A, Li MZ, Yang ZF, Nie G, Xie WG, Xu L, Chen PL, Zhao XX, Jiang WK, Zhang XQ (2020). Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnol J 18, 373-388.
DOI PMID |
[15] | Jaškūnė K, Aleliūnas A, Statkevičiūtė G, Kemešytė V, Studer B, Yates S (2020). Genome-wide association study to identify candidate loci for biomass formation under water deficit in perennial ryegrass. Front Plant Sci 11, 570204. |
[16] | Kamal N, Renhuldt NT, Bentzer J, Gundlach H, Haberer G, Juhász A, Lux T, Bose U, Tye-Din JA, Lang D, Van Gessel N, Reski R, Fu YB, Spégel P, Ceplitis A, Himmelbach A, Waters AJ, Bekele WA, Colgrave ML, Hansson M, Stein N, Mayer KFX, Jellen EN, Maughan PJ, Tinker NA, Mascher M, Olsson O, Spannagl M, Sirijovski N (2022). The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606, 113-119. |
[17] | Keep T, Sampoux JP, Blanco-Pastor JL, Dehmer KJ, Hegarty MJ, Ledauphin T, Litrico I, Muylle H, Roldán-Ruiz I, Roschanski AM, Ruttink T, Surault F, Willner E, Barre P (2020). High-throughput genome-wide genotyping to optimize the use of natural genetic resources in the grassland species perennial ryegrass (Lolium perenne L.). G3 (Bethesda). 10, 3347-3364. |
[18] | Li A, Liu A, Du X, Chen JY, Yin M, Hu HY, Shrestha N, Wu SD, Wang HQ, Dou QW, Liu ZP, Liu JQ, Yang YZ, Ren GP (2020). A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hortic Res 7, 194. |
[19] |
Li GW, Wang LJ, Yang JP, He H, Jin HB, Li XM, Ren TH, Ren ZL, Li F, Han X, Zhao XG, Dong LL, Li YW, Song ZP, Yan ZH, Zheng NN, Shi CL, Wang ZH, Yang SL, Xiong ZJ, Zhang ML, Sun GH, Zheng X, Gou MY, Ji CM, Du JK, Zheng HK, Doležel J, Deng XW, Stein N, Yang QH, Zhang KP, Wang DW (2021). A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53, 574-584.
DOI PMID |
[20] | Liu YM, Wang ZH, Wu XY, Zhu JW, Luo H, Tian DM, Li CP, Luo JC, Zhao WM, Hao HQ, Jing HC (2021). SorGSD: updating and expanding the sorghum genome science database with new contents and tools. Biotechnol Biofuels 14, 165. |
[21] |
Long RC, Zhang F, Zhang ZW, Li MN, Chen L, Wang X, Liu WW, Zhang TJ, Yu LX, He F, Jiang XQ, Yang XJ, Yang CF, Wang Z, Kang JM, Yang QC (2022). Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genom Proteom Bioinf 20, 14-28.
DOI PMID |
[22] | Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, Sreedasyam A, Healey A, Session A, Shu SQ, Barry K, Bonos S, Boston L, Daum C, Deshpande S, Ewing A, Grabowski PP, Haque T, Harrison M, Jiang JM, Kudrna D, Lipzen A, Pendergast IVTH, Plott C, Qi P, Saski CA, Shakirov EV, Sims D, Sharma M, Sharma R, Stewart A, Singan VR, Tang YH, Thibivillier S, Webber J, Weng XY, Williams M, Wu GA, Yoshinaga Y, Zane M, Zhang L, Zhang JY, Behrman KD, Boe AR, Fay PA, Fritschi FB, Jastrow JD, Lloyd-Reilley J, Martínez-Reyna JM, Matamala R, Mitchell RB, Rouquette FM Jr, Ronald P, Saha M, Tobias CM, Udvardi M, Wing RA, Wu YQ, Bartley LE, Casler M, Devos KM, Lowry DB, Rokhsar DS, Grimwood J, Juenger TE, Schmutz J (2021). Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438-444. |
[23] | Luo H, Zhao WM, Wang YQ, Xia Y, Wu XY, Zhang LM, Tang BX, Zhu JW, Fang L, Du ZL, Bekele WA, Tai SS, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Luo JC, Jing HC (2016). SorGSD: a sorghum genome SNP database. Biotechnol Biofuels 9, 6. |
[24] | Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J (2017). Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics 18, 578. |
[25] | Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556. |
[26] |
Pecrix Y, Staton SE, Sallet E, Lelandais-Brière C, Moreau S, Carrère S, Blein T, Jardinaud MF, Latrasse D, Zouine M, Zahm M, Kreplak J, Mayjonade B, Satgé C, Perez M, Cauet S, Marande W, Chantry-Darmon C, Lopez-Roques C, Bouchez O, Bérard A, Debellé F, Muños S, Bendahmane A, Bergès H, Niebel A, Buitink J, Frugier F, Benhamed M, Crespi M, Gouzy J, Gamas P (2018). Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants 4, 1017-1025.
DOI PMID |
[27] | Peng YY, Yan HH, Guo LC, Deng C, Wang CL, Wang YB, Kang LP, Zhou PP, Yu KQ, Dong XL, Liu XM, Sun ZY, Peng Y, Zhao J, Deng D, Xu YH, Li Y, Jiang QT, Li Y, Wei LM, Wang JR, Ma J, Hao M, Li W, Kang HY, Peng ZS, Liu DC, Jia JZ, Zheng YL, Ma T, Wei YM, Lu F, Ren CZ (2022). Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 54, 1248-1258. |
[28] | Poudel HP, Sanciangco MD, Kaeppler SM, Buell CR, Casler MD (2019). Genomic prediction for winter survival of lowland switchgrass in the northern USA.G3 (Bethesda) 9, 1921-1931. |
[29] | Ren GP, Jiang YY, Li A, Yin M, Li MJ, Mu WJ, Wu Y, Liu JQ (2022). The genome sequence provides insights into salt tolerance of Achnatherum splendens (Gramineae), a constructive species of alkaline grassland. Plant Biotechnol J 20, 116-128. |
[30] |
Shen C, Du HL, Chen Z, Lu HW, Zhu FG, Chen H, Meng XZ, Liu QW, Liu P, Zheng LH, Li XX, Dong JJ, Liang CZ, Wang T (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13, 1250-1261.
DOI PMID |
[31] | Siekmann D, Jansen G, Zaar A, Kilian A, Fromme FJ, Hackauf B (2021). A genome-wide association study pinpoints quantitative trait genes for plant height, heading date, grain quality, and yield in rye (Secale cereale L.). Front Plant Sci 12, 718081. |
[32] | Songsomboon K, Crawford R, Crawford J, Hansen J, Cummings J, Mattson N, Bergstrom GC, Viands DR (2022). Genome-wide associations with resistance to bipolaris leaf spot (Bipolaris oryzae (Breda de Haan) Shoemaker) in a northern switchgrass population (Panicum virgatum L.). Plants (Basel) 11, 1362. |
[33] | Tang HB, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou SG, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD (2014). An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15, 312. |
[34] | Tao YF, Luo H, Xu JB, Cruickshank A, Zhao XR, Teng F, Hathorn A, Wu XY, Liu YM, Shatte T, Jordan D, Jing HC, Mace E (2021). Extensive variation within the pan- genome of cultivated and wild sorghum. Nat Plants 7, 766-773. |
[35] | Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR (2020). Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435. |
[36] | Wang TZ, Ren LF, Li CH, Zhang D, Zhang XX, Zhou G, Gao D, Chen RJ, Chen YH, Wang ZL, Shi FL, Farmer AD, Li YS, Zhou MY, Young ND, Zhang WH (2021). The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol 19, 96. |
[37] | Wu F, Duan Z, Xu P, Yan Q, Meng MH, Cao MS, Jones CS, Zong XF, Zhou P, Wang YM, Luo K, Wang SS, Yan ZZ, Wang PL, Di HY, Ouyang ZF, Wang YR, Zhang JY (2022a). Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnol J 20, 592-609. |
[38] | Wu XY, Liu YM, Luo H, Shang L, Leng CY, Liu ZQ, Li ZG, Lu XC, Cai HW, Hao HQ, Jing HC (2022b). Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol Plant 15, 537-551. |
[39] |
Yan Q, Wu F, Xu P, Sun ZY, Li J, Gao LJ, Lu LY, Chen DD, Muktar M, Jones C, Yi XF, Zhang JY (2021). The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Mol Ecol Resour 21, 526-542.
DOI PMID |
[40] | Yan ZF, Liu HC, Chen Y, Sun J, Ma LC, Wang AH, Miao FH, Cong LL, Song H, Yin X, Wang Q, Gong YY, Yang GF, Wang ZY (2022). High-quality chromosome-scale de novo assembly of the Paspalum notatum ‘Flugge’ genome. BMC Genomics 23, 293. |
[41] | Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van De Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou SG, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang HB, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai XB, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua AX, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang CT, Lin SP, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin BF, Qu CM, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi RH, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang KQ, Wang MY, Wang XH, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing YB, Yang LM, Yao ZY, Ying F, Zhai JX, Zhou LP, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520-524. |
[42] | Zhang JY, Wu F, Yan Q, John UP, Cao MS, Xu P, Zhang ZS, Ma TT, Zong XF, Li J, Liu RJ, Zhang YF, Zhao YF, Kanzana G, Lv YY, Nan ZB, Spangenberg G, Wang YR (2021). The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnol J 19, 532-547. |
[43] | Zhang LM, Leng CY, Luo H, Wu XY, Liu ZQ, Zhang YM, Zhang H, Xia Y, Shang L, Liu CM, Hao DY, Zhou YH, Chu CC, Cai HW, Jing HC (2018). Sweet sorghum originated through selection of Dry, a plant-specific NAC transcription factor gene. Plant Cell 30, 2286-2307. |
[44] | Zhang SK, Xia ZQ, Li C, Wang XH, Lu XQ, Zhang WQ, Ma HZ, Zhou XC, Zhang WX, Zhu TT, Liu PD, Liu GD, Wang WQ, Xia T (2022). Chromosome-scale genome assembly provides insights into speciation of allotetraploid and massive biomass accumulation of elephant grass (Pennisetum purpureum Schum.). Mol Ecol Resour 22, 2363-2378. |
[45] | Zhang WT, Liu J, Zhang YX, Qiu J, Li Y, Zheng BJ, Hu FH, Dai SJ, Huang XH (2020). A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Sci China Life Sci 63, 1269-1282. |
[46] | Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang SY, Ramachandran S, Liu CM, Jing HC (2011). Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12, R114. |
[1] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[2] | 武棒棒, 郝宇琼, 杨淑斌, 黄雨茜, 关攀锋, 郑兴卫, 赵佳佳, 乔玲, 李晓华, 刘维仲, 郑军. 山西小麦籽粒叶黄素含量变异及遗传特性分析[J]. 植物学报, 2023, 58(4): 535-547. |
[3] | 褚振州, 古丽巴哈尔·依斯拉木, 屈泽众, 田新民. 同域分布的3种木蓼属植物叶绿体基因组比较[J]. 植物学报, 2023, 58(3): 417-432. |
[4] | 林克剑, 刘志鹏, 罗栋, 武自念. 饲草种质资源研究现状、存在问题与发展建议[J]. 植物学报, 2023, 58(2): 241-247. |
[5] | 邓娴, 李彤, 曹晓风. 基因编辑在饲草育种中的应用与展望[J]. 植物学报, 2023, 58(2): 233-240. |
[6] | 邱锐, 何峰, 李瑞, 王亚梅, 邢思年, 曹英萍, 刘叶飞, 周昕越, 赵彦, 付春祥. 柳枝稷木质素基因F5H的高效编辑[J]. 植物学报, 2023, 58(2): 298-307. |
[7] | 李晓明, 王兰芬, 唐永生, 常玉洁, 张菊香, 王述民, 武晶. 普通菜豆抗菜豆象性状的全基因组关联分析[J]. 植物学报, 2023, 58(1): 77-89. |
[8] | 李园, 常玉洁, 王兰芬, 王述民, 武晶. 普通菜豆镰孢菌枯萎病抗性种质资源筛选及全基因组关联分析[J]. 植物学报, 2023, 58(1): 51-61. |
[9] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[10] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[11] | 孔照胜, 杨文强, 王柏臣, 林荣呈. 豆科饲草碳氮高效固定、转运和同化利用研究进展[J]. 植物学报, 2022, 57(6): 764-773. |
[12] | 赵洪, 宋丽珍, 张玉娥, 程佑发, 薛勇彪. 饲草自交不亲和性与近交衰退[J]. 植物学报, 2022, 57(6): 742-755. |
[13] | 王甜甜, 曹丽雯, 刘智全, 杨庆山, 陈良, 陈敏, 景海春. 黄河三角洲滨海草带建设的饲草基础生物学问题[J]. 植物学报, 2022, 57(6): 837-847. |
[14] | 张波, 任长忠. 燕麦基因组学与分子育种研究进展[J]. 植物学报, 2022, 57(6): 785-791. |
[15] | 景海春, 王台, 林荣呈, 曹晓风, 种康. 加强饲草基础生物学研究,保障饲草种业与国家大粮食安全[J]. 植物学报, 2022, 57(6): 719-724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||