植物学报 ›› 2018, Vol. 53 ›› Issue (6): 856-866.DOI: 10.11983/CBB17185
• 专题论坛 • 上一篇
收稿日期:
2017-10-12
出版日期:
2018-11-01
发布日期:
2018-12-05
通讯作者:
杨兴洪
作者简介:
作者简介:白克智, 1959年开始在中国科学院植物研究所工作, 先后任助理研究员、研究员, 长期从事植物生长发育及其调控的研究。1986年,其主持的“满江红生物学特性研究”荣获中国科学院科技进步二等奖。曾任《植物生理学报》编委、《植物学报》常务编委、中国植物生长调节剂协会主任等职。
基金资助:
Zhang Tianpeng, Yang Xinghong*()
Received:
2017-10-12
Online:
2018-11-01
Published:
2018-12-05
Contact:
Yang Xinghong
摘要: 番茄(Solanum lycopersicum)是目前世界上种植面积最广且最受欢迎的蔬菜作物之一, 也是肉果及茄科的重要模式植物。番茄果实发育主要分为早期果实发育和果实成熟2个时期, 但果实形态结构和大小主要决定于早期果实发育时期。该文围绕番茄早期果实发育时期植物激素、细胞周期、表观遗传和源库代谢等多方面调控的分子机制进行了综述, 旨在认识植物生长与发育的基本生物学问题及促进基础理论研究成果在生产中应用。
张天鹏, 杨兴洪. 番茄果实早期发育的分子生理机制研究进展. 植物学报, 2018, 53(6): 856-866.
Zhang Tianpeng, Yang Xinghong. Advances in the Molecular and Physiological Mechanisms of Early Development of Tomato Fruit. Chinese Bulletin of Botany, 2018, 53(6): 856-866.
图 1 番茄果实发育时期示意图番茄果实发育过程主要分为2个时期: 果实早期发育期与果实成熟发育期。番茄果实的形态结构与大小主要决定于番茄果实早期发育期, 该时期主要特点为细胞分裂和增大。在细胞分裂过程中, 果皮细胞层数不断增加, 番茄果实逐渐增大; 而在细胞增大过程中, 细胞层数已不再增加, 细胞开始膨大, 导致番茄果实迅速增大。番茄果实成熟发育期的主要特点为果实颜色及果实中代谢产物的变化。
Figure 1 Fruit development in tomato The development of tomato fruit can be divided into early fruit growth and fruit ripening, but for fruit morphological structure and fruit size, they are mainly determined the early stage of fruit development. In the period of tomato fruit early development, the characteristic is cell division and cell expansion. For the cell division process, the number of cell layers across the pericarp will be increased and fruit will be bigger than before. Fruit growth then proceeds into the cell expansion phase, in this phase, cell layers will not increase but cell enlargement occurred, leading to size increase of tomato fruit rapidly. The main characteristic of fruit ripening is the changes of fruit color and metabolites in tomato.
图 2 番茄果实早期发育时期相关途径调控示意图箭头表示正调控, 障碍线表示负调控。CDKA1: 细胞周期依赖性激酶A1; CDKB: 细胞周期依赖性激酶B; CWIN: 细胞壁转化酶; GLK2: 类Golden 2转录因子; HMT: 组蛋白甲基转移酶; IMA: 分生组织活性抑制子; SWEET: 糖转运蛋白
Figure 2 Related pathways regulate early fruit growth in tomato Arrows represent positive regulation, barred arrows represent negative regulation. CDKA1: Cyclin-dependent protein kinase A1; CDKB: Cyclin-dependent protein kinase B; CWIN: Cell wall invertase; GLK2: Golden 2-like; HMT: Histone methyltransferase; IMA: Inhibitor of meristem activity; SWEET: Sugar transporter
[1] |
许智宏, 李家洋 (2006). 中国植物激素研究: 过去、现在和未来. 植物学通报 23, 433-442.
DOI URL |
[2] |
Adachi S, Nobusawa T, Umeda M (2009). Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev Biol 329, 306-314.
DOI URL PMID |
[3] |
Albacete A, Cantero-Navarro E, Balibrea ME, GroBkinsky DK, De La Cruz González M, Martlnez-Andújar C, Smigocki AC, Roitsch T, Pérez-Alfocea F (2014). Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.J Exp Bot 65, 6081-6095.
DOI URL PMID |
[4] |
Alpert KB, Grandillo S, Tanksley SD (1995). fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91, 994-1000.
DOI URL PMID |
[5] |
Alpert KB, Tanksley SD (1996). High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93, 15503-15507.
DOI URL |
[6] |
álvaro F, Royo C, Garcla del Moral LF, Villegas D (2008). Grain filling and dry matter translocation responses to source-sink modifications in a historical series of durum wheat.Crop Sci 48, 1523-1531.
DOI URL |
[7] |
Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, Hernould M, Chevalier C (2015). Fruit growth-related genes in tomato.J Exp Bot 66, 1075-1086.
DOI URL PMID |
[8] |
Balibrea ME, Parra M, Bolarln MC, Pérez-Alfocea F (1999). Cytoplasmic sucrolytic activity controls tomato fruit growth under salinity.Funct Plant Biol 26, 561-568.
DOI URL |
[9] |
Bermúdez L, de Godoy F, Baldet P, Demarco D, Osorio S, Quadrana L, Almeida J, Asis R, Gibon Y, Fernie AR, Rossi M, Carrari F (2014). Silencing of the tomato sugar partitioning affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism.Plant J 77, 676-687.
DOI URL PMID |
[10] |
Bermúdez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M (2008). A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit.J Exp Bot 59, 2875-2890.
DOI URL PMID |
[11] |
Carrari F, Fernie AR (2006). Metabolic regulation underlying tomato fruit development. J Exp Bot 57, 1883-1897.
DOI URL PMID |
[12] | Chan SWL, Henderson IR, Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6, 351-360. |
[13] |
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010). Sugar transporters for intercellular exchange and nutrition of pathogens.Nature 468, 527-532.
DOI URL PMID |
[14] |
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.Science 335, 207-211.
DOI URL PMID |
[15] |
Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005). Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth.Plant Phy- siol 139, 1984-1994.
DOI URL |
[16] |
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N (2014). Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory.J Exp Bot 65, 2731-2746.
DOI URL PMID |
[17] |
Chinnusamy V, Zhu JK (2009). Epigenetic regulation of stress responses in plants.Curr Opin Plant Biol 12, 133-139.
DOI URL PMID |
[18] | Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012). Chromium stress mitigation by polyamine-brassi- nosteroid application involves phytohormonal and physio- logical strategies in Raphanus sativus L. PLoS One 7, e33210. |
[19] |
Cigliano RA, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM (2013). Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.BMC Genomics 14, 57.
DOI URL PMID |
[20] |
Cong B, Barrero LS, Tanksley SD (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication.Nat Genet 40, 800-804.
DOI URL PMID |
[21] |
Czerednik A, Busscher M, Angenent GC, de Maagd RA (2015). The cell size distribution of tomato fruit can be changed by overexpression of CDKA1. Plant Biotechnol J 13, 259-268.
DOI URL PMID |
[22] |
Czerednik A, Busscher M, Bielen BAM, Wolters-Arts M, de Maagd RA, Angenent GC (2012). Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. J Exp Bot 63, 2605-2617.
DOI URL PMID |
[23] |
Damon S, Hewitt J, Nieder M, Bennett AB (1988). Sink metabolism in tomato fruit. II. Phloem unloading and sugar uptake.Plant Physiol 87, 731-736.
DOI URL PMID |
[24] |
de Jong M, Wolters-Arts M, Garcla-Martlnez JL, Mariani C, Vriezen WH (2011). The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development. J Exp Bot 62, 617-626.
DOI URL PMID |
[25] |
de Jong M, Wolters-Arts M, Schimmel BCJ, Stultiens CLM, de Groot PFM, Powers SJ, Tikunov YM, Bovy AG, Mariani C, Vriezen WH, Rieu I (2015). Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp Bot 66, 3405-3416.
DOI URL PMID |
[26] |
Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomad UC, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010). Conservation and divergence of methylation patterning in plants and animals.Proc Natl Acad Sci USA 107, 8689-8694.
DOI URL PMID |
[27] |
Fos M, Nuez F, Garcla-Martlnez JL (2000). The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122, 471-480.
DOI URL |
[28] |
Frary A, Nesbitt TC, Frary A, Grandillo S, Van Der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000). fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85-88.
DOI URL PMID |
[29] |
Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP (2004). Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves.Plant Cell Environ 27, 497-507.
DOI URL PMID |
[30] |
Gillaspy G, Ben-David H, Gruissem W (1993). Fruits: a developmental perspective.Plant Cell 5, 1439-1451.
DOI URL |
[31] |
Giovannoni JJ (2004). Genetic regulation of fruit development and ripening.Plant Cell 16, S170-S180.
DOI URL PMID |
[32] |
Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007). The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit.Plant J 51, 642-655.
DOI URL PMID |
[33] |
Hancock JT, Neill SJ, Wilson ID (2011). Nitric oxide and ABA in the control of plant function.Plant Sci 181, 555-559.
DOI URL |
[34] |
He YH (2012). Chromatin regulation of flowering.Trends Plant Sci 17, 556-562.
DOI URL |
[35] |
Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inzé D (1993). cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5, 1711-1723.
DOI URL PMID |
[36] |
Ho LC (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato.J Exp Bot 47, 1239-1243.
DOI URL PMID |
[37] | Huang ZJ, van der Knaap E (2011). Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet 123, 465-474. |
[38] | Iwakawa H, Shinmyo A, Sekine M (2006). Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of gene- rative cells in male gametogenesis. Plant J 45, 819-831. |
[39] |
Jin Y, Ni DA, Ruan YL (2009). Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.Plant Cell 21, 2072-2089.
DOI URL PMID |
[40] |
Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009). Assessing the impact of transgenerational epigenetic variation on complex traits.PLoS Genet 5, e1000530.
DOI URL PMID |
[41] | Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP (2000). CDK-related protein kinases in plants. In: Inzé D, ed. The Plant Cell Cycle. Dordrecht: Springer. pp. 607-620. |
[42] |
Joubès J, Phan TH, Just D, Rothan C, Bergounioux C, Raymond P, Chevalier C (1999). Molecular and biochemical characterization of the involvement of cyclin- dependent kinase A during the early development of tomato fruit.Plant Physiol 121, 857-869.
DOI URL PMID |
[43] | Kit AH, Boureau L, Stammitti-Bert L, Rolin D, Teyssier E, Gallusci P (2010). Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development. Plant Mol Biol 74, 201-213. |
[44] |
Klee HJ, Giovannoni JJ (2011). Genetics and control of tomato fruit ripening and quality attributes.Annu Rev Genet 45, 41-59.
DOI URL PMID |
[45] |
Kumar R, Khurana A, Sharma AK (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits.J Exp Bot 65, 4561-4575.
DOI URL PMID |
[46] |
Lauria M, Rossi V (2011). Epigenetic control of gene regulation in plants.Biochim Biophys Acta Gene Regul Mech 1809, 369-378.
DOI URL PMID |
[47] |
Law JA, Jacobsen SE (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Nat Rev Genet 11, 204-220.
DOI URL |
[48] |
Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004). A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm.Plant Cell 16, 1854-1869.
DOI URL |
[49] |
Li B, Carey M, Workman JL (2007). The role of chromatin during transcription.Cell 128, 707-719.
DOI URL PMID |
[50] |
Li N, Parsons BL, Liu DR, Mattoo AK (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.Plant Mol Biol 18, 477-487.
DOI URL PMID |
[51] |
Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW (2014). Genomic analyses provide insights into the history of tomato breeding.Nat Genet 46, 1220-1226.
DOI URL PMID |
[52] |
Lippman ZB, Semel Y, Zamir D (2007). An integrated view of quantitative trait variation using tomato interspecific introgression lines.Curr Opin Genet Dev 17, 545-552.
DOI URL PMID |
[53] |
Liu J, Van Eck J, Cong B, Tanksley SD (2002). A new class of regulatory genes underlying the cause of pear-shaped tomato fruit.Proc Natl Acad Sci USA 99, 13302-13306.
DOI URL PMID |
[54] |
Liu YH, Offler CE, Ruan YL (2016). Cell wall invertase promotes fruit set under heat stress by suppressing ROS- independent cell death.Plant Physiol 172, 163-180.
DOI URL PMID |
[55] |
Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011). Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents.J Plant Growth Regul 30, 405-415.
DOI URL |
[56] | Masood A, Per TS, Asgher M, Fatma M, Khan MIR, Rasheed F, Hussain SJ, Khan NA (2016). Glycine betaine: role in shifting plants toward adaptation under extreme environments. In: Iqbal N, Nazar R, Khan NA, eds. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. New Delhi: Spring- er.pp. 69-82. |
[57] |
Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S (2012). Roles and regulation of cytokinins in tomato fruit development.J Exp Bot 63, 5569-5579.
DOI URL PMID |
[58] |
McAtee P, Karim S, Schaffer R, David K (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening.Front Plant Sci 4, 79.
DOI URL PMID |
[59] |
McCurdy DW, Dibley S, Cahyanegara R, Martin A, Patrick JW (2010). Functional characterization and RNAi-medi- ated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit.Mol Plant 3, 1049-1063.
DOI URL PMID |
[60] |
Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life.Nat Biotechnol 20, 613-618.
DOI URL PMID |
[61] |
Michaels SD (2009). Flowering time regulation produces much fruit.Curr Opin Plant Biol 12, 75-80.
DOI URL PMID |
[62] |
Mirouze M, Paszkowski J (2011). Epigenetic contribution to stress adaptation in plants.Curr Opin Plant Biol 14, 267-274.
DOI URL PMID |
[63] |
Mu Q, Huang ZJ, Chakrabarti M, Illa-Berenguer E, Liu XX, Wang YP, Ramos A, van der Knaap E (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet 13, e1006930.
DOI URL PMID |
[64] |
Munos S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M, Brunel D, Causse M (2011). Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156, 2244-2254.
DOI URL PMID |
[65] |
Nguyen CV, Vrebalov JT, Gapper NE, Zheng Y, Zhong SL, Fei ZJ, Giovannoni JJ (2014). Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening.Plant Cell 26, 585-601.
DOI URL PMID |
[66] |
Nitsch L, Kohlen W, Oplaat C, Charnikhova T, Cristescu S, Michieli P, Wolters-Arts M, Bouwmeester H, Mariani C, Vriezen WH, Rieu I (2012). ABA-deficiency results in reduced plant and fruit size in tomato.J Plant Physiol 169, 878-883.
DOI URL PMID |
[67] | Noreen S, Athar HUR, Ashraf M (2013). Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pak J Bot 45, 1873-1881. |
[68] |
Ozga JA, Reinecke DM (2003). Hormonal interactions in fruit development.J Plant Growth Regul 22, 73-81.
DOI URL |
[69] |
Pan Y, Bradley G, Pyke K, Ball G, Lu CG, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, Boyden L, Cade R, Chapman NH, Fraser PD, Hodgman C, Seymour GB (2013). Network inference analysis identifies an APRR2- Like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol 161, 1476-1485.
DOI URL PMID |
[70] |
Park EJ, Jeknic Z, Chen THH, Murata N (2007). The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J 5, 422-430.
DOI URL PMID |
[71] |
Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa- Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Munoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu YS, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB (2012). Uniform ripening encodes a GOLDEN 2-LIKE transcription factor regulating tomato fruit chloroplast development.Science 336, 1711-1715.
DOI URL PMID |
[72] |
Reyes JC (2006). Chromatin modifiers that control plant development.Curr Opin Plant Biol 9, 21-27.
DOI URL PMID |
[73] |
Rodrlguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011). Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156, 275-285.
DOI PMID |
[74] |
Ruan YL (2014). Sucrose metabolism: gateway to diverse carbon use and sugar signaling.Annu Rev Plant Biol 65, 33-67.
DOI URL PMID |
[75] |
Ruan YL, Patrick JW (1995). The cellular pathway of postphloem sugar transport in developing tomato fruit.Planta 196, 434-444.
DOI URL |
[76] |
Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012). Molecular regulation of seed and fruit set.Trends Plant Sci 17, 656-665.
DOI URL PMID |
[77] |
Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013). Epigenetic mechanisms of plant stress responses and adaptation.Plant Cell Rep 32, 1151-1159.
DOI URL PMID |
[78] |
Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011). Transgene- rational epigenetic instability is a source of novel methylation variants.Science 334, 369-373.
DOI URL PMID |
[79] |
Segers G, Gadisseur I, Bergounioux C, de Almeida Engler J, Jacqmard A, van Montagu M, Inzé D (1996). The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J 10, 601-612.
DOI URL PMID |
[80] |
Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, Garcla- Martlnez JL (2007). Gibberellin regulation of fruit set and growth in tomato.Plant Physiol 145, 246-257.
DOI URL PMID |
[81] |
Seymour G, Poole M, Manning K, King GJ (2008). Gene- tics and epigenetics of fruit development and ripening.Curr Opin Plant Biol 11, 58-63.
DOI URL PMID |
[82] |
Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013). Fruit development and ripening.Annu Rev Plant Biol 64, 219-241.
DOI URL |
[83] |
Shen HS, He H, Li JG, Chen W, Wang XC, Guo L, Peng ZY, He GM, Zhong SW, Qi YJ, Terzaghi W, Deng XW (2012). Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids.Plant Cell 24, 875-892.
DOI URL |
[84] |
Sheng J, Ye J, Shen L, Luo Y (2003). Effect of lipoxygenase and jasmonic acid on ethylene biosynthesis during tomato fruit ripening.Acta Hortic 620, 119-125.
DOI URL |
[85] |
Shinozaki Y, Hao SH, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei ZJ, Zhong SL, Giovannoni JJ, Rose JKC, Okabe Y, Heta Y, Ezura H, Ariizumi T (2015). Ethy- lene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J 83, 237-251.
DOI URL PMID |
[86] | Sicard A, Petit J, Mouras A, Chevalier C, Hernould M (2008). Meristem activity during flower and ovule deve- lopment in tomato is controlled by the mini zinc finger gene INHIBITOR OF MERISTEM ACTIVITY. Plant J 55, 415-427. |
[87] |
Srivastava A, Handa AK (2005). Hormonal regulation of tomato fruit development: a molecular perspective.J Plant Growth Regul 24, 67-82.
DOI URL |
[88] |
Strahl BD, Allis CD (2000). The language of covalent histone modifications.Nature 403, 41-45.
DOI URL PMID |
[89] |
Sun L, Rodriguez GR, Clevenger JP, Illa-Berenguer E, Lin JS, Blakeslee JJ, Liu WL, Fei ZJ, Wijeratne A, Meulia T, van der Knaap E (2015). Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J Exp Bot 66, 6471-6482.
DOI URL PMID |
[90] |
Tanksley SD (2004). The genetic, developmental, and molecular bases of fruit size and shape variation in tomato.Plant Cell 16, S181-S189.
DOI URL PMID |
[91] |
Teyssier E, Bernacchia G, Maury S, Kit AH, Stammitti- Bert L, Rolin D, Gallusci P (2008). Tissue dependent variations of DNA methylation and endoreduplication le- vels during tomato fruit development and ripening.Planta 228, 391-399.
DOI URL |
[92] | Teyssier E, Boureau L, Chen WW, Liu RE, Degraeve- Guibault C, Stammitti L, Hong YG, Gallusci P (2015). Epigenetic regulation during fleshy fruit development and ripening. In: Poltronieri P, Hong YG, eds. Applied Plant Genomics and Biotechnology. Amsterdam: Elsevier. pp. 133-151. |
[93] |
The Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution.Nature 485, 635-641.
DOI URL PMID |
[94] |
Tilman D, Balzer C, Hill J, Befort BL (2011). Global food demand and the sustainable intensification of agriculture.Proc Natl Acad Sci USA 108, 20260-20264.
DOI URL |
[95] |
van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang ZJ, Keyhaninejad N, Mu Q, Sun L, Wang YP (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape.Front Plant Sci 5, 227.
DOI URL PMID |
[96] |
Vardhini BV, Rao SSR (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids.Phytochemistry 61, 843-847.
DOI URL PMID |
[97] |
Verkest A, Manes CLD, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inzé D, De Veylder L (2005). The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes.Plant Cell 17, 1723-1736.
DOI URL |
[98] |
Vermaak D, Ahmad K, Henikoff S (2003). Maintenance of chromatin states: an open-and-shut case.Curr Opin Cell Biol 15, 266-274.
DOI URL PMID |
[99] |
Wollmann H, Berger F (2012). Epigenetic reprogramming during plant reproduction and seed development.Curr Opin Plant Biol 15, 63-69.
DOI URL PMID |
[100] | Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011). SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157, 1175-1186. |
[101] |
Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008). A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit.Science 319, 1527-1530.
DOI URL PMID |
[102] |
Yang JC, Zhang JH (2010). Crop management techniques to enhance harvest index in rice.J Exp Bot 61, 3177-3189.
DOI URL PMID |
[103] |
Yu SM, Lo SF, Ho THD (2015). Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling.Trends Plant Sci 20, 844-857.
DOI URL PMID |
[104] |
Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009). RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150, 1204-1218.
DOI URL PMID |
[105] |
Zhang JH, Jia WS, Yang JC, Ismail AM (2006). Role of ABA in integrating plant responses to drought and salt stresses.Field Crops Res 97, 111-119.
DOI URL |
[106] |
Zhang X, Shiu S, Cal A, Borevitz JO (2008). Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4, e1000032.
DOI URL PMID |
[107] | Zhao XA, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, Sprunck S, Schnittger A (2012). A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet 8, e1002847. |
[108] |
Zhong SL, Fei ZJ, Chen YR, Zheng Y, Huang MY, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifica- tions associated with ripening.Nat Biotechnol 31, 154-159.
DOI URL PMID |
[1] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性研究[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 廖人玉, 王佳伟. 从损伤到重生——REF1小肽如何激发植物的内在再生潜能[J]. 植物学报, 2024, 59(3): 347-350. |
[3] | 陈雯, 周颖盈, 罗平, 崔永一. 被子植物花朵重瓣化分子调控机制[J]. 植物学报, 2024, 59(2): 257-277. |
[4] | 张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1): 122-133. |
[5] | 苏鲁方, 王萍, 李顺, 蔡燕, 郭丹丹, 刘琴, 刘小云. 植物sirtuin蛋白家族研究进展[J]. 植物学报, 2023, 58(6): 998-1007. |
[6] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[7] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[8] | 戴琛, 汪瑾, 卢亚萍. 衍生化UPLC-MS法测定酸性植物激素[J]. 植物学报, 2022, 57(4): 500-507. |
[9] | 李月, 胡德升, 谭金芳, 梅浩, 王祎, 李慧, 李芳, 韩燕来. 单列毛壳菌通过促进秸秆降解并调控激素响应基因表达促进玉米生长[J]. 植物学报, 2022, 57(4): 422-433. |
[10] | 郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环, 张建新, 饶米德, 刘鹏. 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系[J]. 植物学报, 2022, 57(4): 479-489. |
[11] | 刘婷, 王天浩, 淳雁, 李学勇, 赵金凤. 表观遗传调控植物分枝/分蘖研究进展[J]. 植物学报, 2022, 57(4): 532-548. |
[12] | 孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. |
[13] | 王晓敏, 李洪磊, 王林, 周鹏泽, 白圣懿, 李国花, 郑福顺, 陶小荣, 程国新, 高艳明, 李建设. 银川番茄斑萎病毒的分子鉴定[J]. 植物学报, 2021, 56(6): 715-721. |
[14] | 赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控[J]. 植物学报, 2021, 56(4): 488-499. |
[15] | 俞启璐, 赵江哲, 朱晓仙, 张可伟. 水稻根分泌激素调节生长速度[J]. 植物学报, 2021, 56(2): 175-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||