Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (1): 46-57.doi: 10.11983/CBB18045

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Heterologous Overexpression of Rice OsSAPP3 Gene Promotes Leaf Senescence in Transgenic Arabidopsis

Cui Shengnan1,2,Zhang Yihan1,Xu Fan1,*()   

  1. 1 Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Northern Japonica Rice Genetics and Breedings, Ministry of Education, Rice Research Institute, Shenyang Agriculture University, Shenyang 110866, China
    2 Fushun Sifang Senior High School, Fushun 113122, China
  • Received:2018-02-12 Accepted:2018-05-21 Online:2019-07-31 Published:2019-01-01
  • Contact: Xu Fan


Protein phosphatase-catalyzed reversible phosphorylation of proteins is a key aspect of leaf senescence. We screened and cloned a new PP2C gene, OsSAPP3, involved in leaf senescence regulation in rice. The promoter of OsSAPP3 was active in rosette leaves of ProOsSAPP3-GUS transgenic Arabidopsis and its activity increased with leaf age. With heterologous overexpression of OsSAPP3 driven by a CaMV 35S promoter, transgenic Arabidopsis could not grow normally. Therefore, OsSAPP3 heterologous overexpression was induced by the inducible promoter GVG system. Exo- genous inducible heterologous overexpression of OsSAPP3 led to a precocious leaf senescence phenotype in transgenic Arabidopsis including smaller rosette leaves and increased number, premature leaf senescence, and advanced bolting and flowering. Additionally, quantitative RT-PCR showed that exogenous inducible heterologous overexpression of OsSAPP3 upregulated the expression of critical senescence-related transcription factor genes, including SAG12, WRKY6, and NAC2. In summary, OsSAPP3 is a positive factor involved in regulating leaf senescence in rice.

Key words: Arabidopsis, leaf senescence, OsSAPP3, 2C type protein phosphatase

Table 1

Sequences of primers"

Primer name Primer sequence (5'-3') Annotation

Figure 1

GUS histochemical staining of ProOsSAPP3-GUS transgenic Arabidopsis thaliana at different developmental stages (A) From top to bottom, from left to right, the transgenic Arabidopsis thaliana before stain: Stage 0.5, Stage 1.02, Stage 1.04, Stage 1.10, Stage 6.0, Stage 6.9; (B) From top to bottom, from left to right, the transgenic Arabidopsis thaliana was stained in turn, and the seedling age was identical to that before staining; (C) Transgenic Arabidopsis thaliana treated with MOCK solution (hormone solvent); (D) Transgenic Arabidopsis thaliana treated with 10 μmol?L-1 ABA solution; (E) Transgenic Arabidopsis thaliana treated with 10 μmol?L-1 6-BA solution. Bars=5 mm"

Figure 2

Heterologous expression of OsSAPP3 gene lead to abnormal growth and development of transgenic Arabidopsis (A) 35S-OsSAPP3 transgenic Arabidopsis and wild-type Arabidopsis gene expression levels; (B) Wild-type Arabidopsis plant (WT) and 35S-OsSAPP3 transgenic Arabidopsis line (35S-OsSAPP3). The top left panel was the 14-day-old seedling growing in the nutrient soil, the bottom left is the 21-day-old plant growing in the nutrient soil, and the right panel was the plants cultured in nutrient soil for 25 days. Values are means±SD of one representative biological replicate (n=10) out of three, ** P<0.01. Bars=1 cm"

Figure 3

Exogenously induced OsSAPP3 heterologous over expression resulted in the inability of germination of transgenic Arabidopsis (A)-(C) DEX induced 36 h, the germination of transgenic and control seeds; (D)-(F) DEX induced 48 h, the germination of transgenic and control seeds; (G)-(I) DEX induced 72 h, the germination of transgenic and control seeds; (J) The expression of OsSAPP3 induced by exogenous factors at different times; (K) Exogenous induction of WRKY6 expression changes at different times; (L) Gene expression levels of GVG-OsSAPP3 transgenic Arabidopsis homozygous lines. Values are means±SD of one representative biological replicate (n=10) out of three. * P<0.05, ** P<0.01. Bars=1 cm"


Number of rosette
5% significant
1% very significant
Rosette leaf
5% significant
1% very significant
CK 9.4 c A 2.84 d C
Line2 10.2 bc A 2.3 ab BC
Line20 11.8 abc A 1.9 bc AB
Line14 12.6 ab A 1.5 cd A

Figure 4

Exogenous-induced OsSAPP3 heterologous over expression promotes premature aging of transgenic Arabidopsis mature seedlings (A) Arabidopsis control (CK) and GVG-OsSAPP3 transgenic Arabidopsis after spray treatment for 5 days; (B) 24-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis plants; (C) The CK and GVG-OsSAPP3 transgenic Arabidopsis bolting process; (D) 34-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis plants; (E) The CK and GVG-OsSAPP3 transgenic Arabidopsis flowering process; (F) CK and GVG-OsSAPP3 transgenic Arabidopsis after spray treatment for 21 days; (G) The chlorophyll contents of the fourth, fifth and sixth leaf of 26-day-old CK and GVG-OsSAPP3 transgenic Arabidopsis. Values are means±SD of one representative biological replicate (n=10) out of three. Bars=1 cm"

Figure 5

Changes of senescence marker gene expression in the fifth and sixth leaves of control (CK) and GVG-OsSAPP3 transgenic Arabidopsis after 30 μmol?L-1 DEX and MOCK solution treatment for 24 hoursValues are means±SD of one representative biological replicate (n=10) out of three. * P<0.05, ** P<0.01."

1 李合生 (2000). 植物生理生化实验原理和技术. 北京: 高等教育出版社. pp. 134-137.
2 牟少亮, 李秀娟, 官德义, 赖燕, 何水林 ( 2011). 水稻蛋白磷酸酶ABI2基因启动子的克隆和功能分析. 热带作物学报 32, 2293-2297.
doi: 10.3969/j.issn.1000-2561.2011.12.019
3 孙高阳, 吴向远, 叶琳琳, 孟淑君, 阎鹏帅, 汤继华, 郭战勇 ( 2017). 玉米衰老相关基因在2个杂交种及其亲本中的表达分析. 河南农业大学学报 2, 140-148.
4 翁华, 冉亮, 魏群 ( 2003). 植物蛋白磷酸酶及其在植物抗逆中的作用. 植物学报 20, 609-615.
doi: 10.3969/j.issn.1674-3466.2003.05.013
5 肖冬, 崔燕娇, 王宁宁 ( 2014). 叶片衰老过程中的蛋白激酶和蛋白磷酸酶. 植物生理学报 50, 1267-1273.
6 徐凡 ( 2012). GmSARKAtSARK基因调控叶片衰老分子机制的研究. 博士论文. 天津: 南开大学. pp. 1-12.
7 徐凡, 李鹏丽, 安宝燕, 苑玲玲, 孟涛, 岳慧琴, 王宁宁 ( 2010). 大豆诱导型启动子驱动类受体蛋白激酶GmSARK转基因植物分析. 植物学报 45, 149-156.
doi: 10.3969/j.issn.1674-3466.2010.02.002
8 徐娜, 徐江民, 蒋玲欢, 饶玉春 ( 2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112.
doi: 10.11983/CBB16222
9 杨同文, 李成伟 ( 2014). 植物叶片衰老的表观遗传调控. 植物学报 49, 729-737.
doi: 10.3724/SP.J.1259.2014.00729
10 郑建敏, 张涛, 郑家奎 ( 2009). 水稻叶片衰老相关基因的研究进展. 基因组学与应用生物学 28, 1010-1019.
doi: 10.3969/gab.028.001010
11 Aoyama T, Chua NH ( 1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11, 605-612.
doi: 10.1046/j.1365-313X.1997.11030605.x pmid: 9107046
12 Bhatnagar N, Min MK, Choi EH, Kim N, Moon SJ, Yoon I, Kwon T, Junq KH, Kim BG ( 2017). The protein phosphatase 2C clade a protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10.Plant Mol Biol 93, 389-401.
doi: 10.1007/s11103-016-0568-2 pmid: 28000033
13 Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, G?rlach J ( 2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510.
doi: 10.2307/3871382 pmid: 11449047
14 Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ ( 2005). Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/ starvation-induced senescence in Arabidopsis. Plant J 42, 567-585.
doi: 10.1111/j.1365-313X.2005.02399.x pmid: 15860015
15 Castro PH, Lilay GH, Mu?oz-Mérida A, Schjoerring JK, Azevedo H, Assun??o AGL ( 2017). Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci Rep 7, 3806.
doi: 10.1038/s41598-017-03903-6 pmid: 28630437
16 Chen C, Yu Y, Ding XD, Liu BD, Duanmu H, Zhu D, Sun XL, Cao L, Zaib-Un-Nisa, Li Q, Zhu YM ( 2018). Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma 255, 643-654.
doi: 10.1007/s00709-017-1172-2 pmid: 29052008
17 Jiang YJ, Liang G, Yang SZ, Yu DQ ( 2014). Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid- induced leaf senescence. Plant Cell 26, 230-245.
doi: 10.1105/tpc.113.117838 pmid: 24424094
18 Lim PO, Hong GN ( 2007). Aging and senescence of the leaf organ. J Plant Biol 50, 291-300.
doi: 10.1007/BF03030657
19 Lim PO, Woo HR, Hong GN ( 2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8, 272-278.
doi: 10.1016/S1360-1385(03)00103-1 pmid: 12818661
20 Liu D, Gong QQ, Ma YY, Li PL, Li JP, Yang SH, Yuan LL, Yu YQ, Pan DD, Xu F, Wang NN ( 2010). cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61, 1655-1669.
doi: 10.1093/jxb/erq033 pmid: 20194926
21 Liu L, Xu W, Hu XS, Liu HJ, Lin YJ ( 2016). W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 6, 20881.
doi: 10.1038/srep20881 pmid: 26864250
22 Menges M, Hennig L, Gruissem W, Murray JAH ( 2002). Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277, 41987-42002.
23 Quirino BF, Noh YS, Himelblau E, Amasino RM ( 2000). Molecular aspects of leaf senescence. Trends Plant Sci 5, 278-282.
doi: 10.1016/S1360-1385(00)01655-1 pmid: 10871899
24 Robatzek S, Somssich IE ( 2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense.Genes Dev 16, 1139-1149.
doi: 10.1101/gad.222702 pmid: 12000796
25 Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andrès CB, Kessler F, H?rtensteiner S, Paek NC ( 2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex ii for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24, 507-518.
26 Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I ( 2007). The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19, 2213-2224.
doi: 10.1105/tpc.106.049585 pmid: 17630279
27 Shen XJ, Guo X, Zhao D, Zhang Q, Jiang YZ, Wang YT, Peng X, Wei Y, Zhai ZF, Zhao W, Li TH ( 2017). Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.Plant Physiol Biochem 119, 275-285.
doi: 10.1016/j.plaphy.2017.08.025 pmid: 28926798
28 Wang CL, Lu GQ, Hao YQ, Guo HM, Guo Y, Zhao J, Cheng HM ( 2017). ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246, 453-469.
doi: 10.1007/s00425-017-2704-x pmid: 28474114
29 Wang FB, Liu JC, Chen MX, Zhou LJ, Li ZW, Zhao Q, Pan G, Zaidi SHR, Cheng FM ( 2016). Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One 11, e0161203.
doi: 10.1371/journal.pone.0161203 pmid: 27532299
30 Xiao D, Cui YJ, Xu F, Xu XX, Gao GX, Wang YX, Guo ZX, Wang D, Wang NN ( 2015). Senescence-suppressed protein phosphatase directly interacts with the cytoplasmic domain of senescence-associated receptor-like kinase and negatively regulates leaf senescence in Arabidopsis. Plant Physiol 169, 1275-1291.
doi: 10.1104/pp.15.01112 pmid: 26304848
31 Xu F, Meng T, Li PL, Yu YQ, Cui YJ, Wang YX, Gong QQ, Wang NN ( 2011). A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157, 2131-2153.
doi: 10.1104/pp.111.182899 pmid: 3327223
32 Xue TT, Wang D, Zhang SZ, Ehlting J, Ni F, Jakab S, Zheng CC, Zhong Y ( 2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Ara- bidopsis. BMC Genomics 9, 550.
doi: 10.1186/1471-2164-9-550 pmid: 2612031
33 Zhang KW, Gan SS ( 2012). An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158, 961-969.
34 Zhao Y, Chan ZL, Gao JH, Xing L, Cao MJ, Yu CM, Hu YL, You J, Shi HT, Zhu YF, Gong YH, Mu ZX, Wang HQ, Deng X, Wang PC, Bressan RA, Zhu JK ( 2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA 113, 1949-1954.
doi: 10.1073/pnas.1522840113 pmid: 26831097
[1] He Zhenmei,Li Dongming,Qi Yanhua. Advances in Biofunctions of the ABCB Subfamily in Plants [J]. Chin Bull Bot, 2019, 54(6): 688-698.
[2] Xu Wanyue, Wang Yingxiang. Chromosome Behaviors of Male Meiocytes by Chromosome Spread in Arabidopsis thaliana [J]. Chin Bull Bot, 2019, 54(5): 620-624.
[3] Liu Kaige, Qi Shuanghui, Duan Shaowei, Li Dong, Jin Changyu, Gao Chenhao, Liu Mingxun Chen Xuanxia. Functional Analysis of Brassica napus BnTTG1-1 Gene [J]. Chin Bull Bot, 2017, 52(6): 713-722.
[4] Wang Yu, He Yikun. The Molecular Mechanism of Nitric Oxide-mediated S-nitrosylation Coordinating with Protein Methylation During Abiotic Stress Responses [J]. Chin Bull Bot, 2017, 52(6): 681-684.
[5] Shengchun Zhang, Qingming Li, Chengwei Yang. Arabidopsis Metalloprotease FtSH4 Regulates Leaf Senescence Through Auxin and Reactive Oxygen Species [J]. Chin Bull Bot, 2017, 52(4): 453-464.
[6] Mingjie He, Yichen Sun, Xiaoyuan Cheng, Dongxue Shi, Diqin Li, Yiyin Chen, Yongkun Feng, Lu Liu, Tengfei Fan, Chao Yang, Fengqiu Cao, Laihua Liu. Current Research Advances on Glutamate Receptors (GLRs) in Plants [J]. Chin Bull Bot, 2016, 51(6): 827-840.
[7] Juqing Kang, Tianshu Sun, Huiting Zhang, Yihao Shi. Quantitative Trait Loci Mapping Platform of Natural Populations of Arabidopsis thaliana along the Yangtze River in China [J]. Chin Bull Bot, 2016, 51(5): 659-666.
[8] Juqing Kang, Daipeng Zhang. Association of CBF3 Expression and ROS Content Under Low Temperature among Natural Populations of Arabidopsis thaliana in China [J]. Chin Bull Bot, 2016, 51(5): 577-585.
[9] Chunli Ma, Mailisi HeShuote, Zhi Qi, Jing Wang, Junxia Zhang. Mg2+ Transporter MGT7 Mediates Arabidopsis thaliana Adapting to High Calcium Environment [J]. Chin Bull Bot, 2016, 51(4): 496-503.
[10] Hongmei Xi, Wenzhong Xu, Mi Ma. Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1 [J]. Chin Bull Bot, 2016, 51(3): 377-386.
[11] Hui Liu, Danli Guo, Darun Cai, Xianzhong Huang. Heterologous overexpression of ApZFP Promotes Flowering and Improves Abiotic Tolerance in Arabidopsis thaliana [J]. Chin Bull Bot, 2016, 51(3): 296-305.
[12] Dongmei Li, Luya Wang, Lanyue Zhang, Ziyang Tie, Huiping Mao. Mechanism of Arabidopsis Short Peptide Hormones PROPEP Gene Family in the Root Growth [J]. Chin Bull Bot, 2016, 51(2): 202-209.
[13] Kaijian Lei, Jing Ren, Yuanyuan Zhu, Guoyong An. SPL1 is Involved in the Regulation of Rhizosphere Acidification Reaction Under Low Phosphate Condition in Arabidopsis [J]. Chin Bull Bot, 2016, 51(2): 184-193.
[14] Xiongbo Peng, Meng-Xiang Sun. Chinese Scientists Made Breakthrough Progresses in Studies on Signaling Between Male and Female Gametophytes During Fertilization in Plants [J]. Chin Bull Bot, 2016, 51(2): 145-147.
[15] Yuying Qi, Yanli Zhan, Cuibo Wang, Fadi Chen, Jiafu Jiang. Mechanism of AtCPL1 in Regulating Flowering of Arabidopsis [J]. Chin Bull Bot, 2016, 51(1): 9-15.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .